Redmond Municipal Airport Terminal Area Concept Plan

NOVEMBER 29, 2021
Chapter 4 Existing Condition Assessments

4.1 Architectural Assessment
4.1.1 Initial Elements for Consideration
4.2 Structural Systems Assessment
4.3 Mechanical Systems Assessment
4.3.1 HVAC System
4.3.2 Plumbing System
4.3.3 Fire Protection System
4.4 Electrical Systems Assessment
4.4.1 Electrical Distribution System
4.4.2 Lighting System
4.5 Information Technology / Low Voltage Systems Assessment
4.5.1 Communication System
4.5.2 Access Control System
4.5.3 Video Surveillance System
4.5.4 Public Address System
4.5.5 Flight Information Displays
4.5.6 Passenger Information Displays
4.5.7 Gate Information Systems
4.5.8 Cable Television
4.6 Civil Infrastructure
4.6.1 Domestic Water and Fire Protection
4.6.2 Sewer
4.6.3 Storm Drainage
4.6.4 Power, Communications, and Natural Gas
4.7 Airfield Elements
4.7.1 Aircraft Fleet Mix
4.7.2 Aircraft Parking
4.7.3 Pavement Sections
4.7.4 Aircraft Ground Equipment
4.7.5 Passenger Boarding
4.7.6 Aircraft Ground Power
4.7.7 Apron Lighting

Chapter 5 Stakeholder Engagement
5.1 Stakeholder Surveys and Interviews
5.1.1 Stakeholder Considerations – Spatial Related
5.1.2 Stakeholder Considerations – Systems Related
5.1.3 TSA Considerations
5.2 Stakeholder Meetings and Updates

Chapter 6 Development of Alternatives
6.1 Design Criteria
6.1.1 Airfield Proximity Considerations
6.1.2 Apron Considerations
6.2 Initial Building Layout Concept
6.2.1 Basic Massing Diagrams
6.3 Architectural Theming Concepts
6.3.1 Flight
6.3.2 Lodge
6.3.3 Airstream

Chapter 7 Preferred Concept
7.1 Preferred Concept Plans
7.2 Preferred Concept Rough Order of Magnitude (ROM) Program Costs
7.3 Preferred Concept phasing
7.3.1 Phase 1 – West Departure Lounge Expansion / Utility Plant Replacement
7.3.2 Phase 2 – Ticket Area/ATO Expansion and Build Out
7.3.3 Phase 3 – Baggage Claim Expansion and Reconfiguration
7.3.4 Phase 4 – East Departure Lounge Expansion
7.3.5 Phase 5 – Interior Reconfiguration / Administration Build Out

Chapter 8 Beyond Plan

Chapter 9 Appendix
9.1 Stakeholder Input – Survey Information
9.2 Interim Planning Concepts
9.3 Interim Phasing Diagrams
9.4 Site Considerations at full Build Out
CHAPTER 1

EXECUTIVE SUMMARY
EXECUTIVE SUMMARY

The Redmond Municipal Airport (Roberts Field) is a small hub facility, owned and operated by the City of Redmond. It services Central Oregon and currently provides commercial service on Alaska, Allegiant, American, Avelo, Delta and United Airlines. Recent growth in and around the Central Oregon area has resulted in a significant increase in aircraft traffic since the completion of the most recent Master Plan in 2018. Prior to COVID, airport traffic was tracking much higher than the Master Plan forecasted. In 2019, the airport had 482,767 enplanements which was a level not anticipated until 2024. Even in recovery, the airport is exceeding the national average. Extrapolating both master plan and recent enplanement data, it is estimated that the airport could see over 830,000 enplanements by 2036.

To respond to the increase in demand the Airport recognized the need to consider elements of expansion to allow the facility to evolve and grow accordingly. Of initial importance was the ability to provide passenger boarding bridge access to the aircraft from a new second level departure lounge area. Enlarging this airside element necessitated a review of all other landside and airside processing components to ensure that the facility remains balanced as it develops. The recommended modifications described herein will result in a facility that can accommodate the capacity demands, improve ADA accessibility, increase energy efficiency, allow for LEED certification, maximize operational efficiency, and enhance the passenger experience.

The City selected RS&H (Consultant) to perform a Terminal Area Concept Plan to better understand the expansions/modifications required to meet the demand horizon. The team assembled by the Consultant to execute the analysis is comprised of the following professional firms:
- RS&H – aviation planning, terminal planning and design, architecture, building engineering, stakeholder engagement, project management
- Morrison Maierle – airfield engineering, site analysis
- Construction Focus – cost estimating

This study was separated into the following primary components:
- Forecast Validation – basic comparison of Master Plan data, current enplanement statistics, and estimated flight scheduling to meet the anticipated 2036 statistics
- Assessment of Existing Conditions – review of most construction documents from 2008 expansion, and on-site evaluation of visible existing conditions
- Stakeholder Engagement – interaction with community leaders, airport tenants (airlines, rental cars, concessions), airport staff, and passengers to identify elements/systems that need improvement
- Preliminary Alternatives – quantifying spatial needs, recognizing impediments to expansion, and the development of massing diagrams to meet the programmatic requirements
- Preferred Concept – refinements to early concepts towards a single recommendation
- Proposed Phasing – considerations of how to sequentially construct to align with possible financing
- ROM Cost Estimate – cost assessment based on suggested phasing

Early discussions with the airport resulted in identifying a number of facility consideration “hotspots” that needed to be rectified as part of the study. These initial elements would be the starting point of the analysis.
 imparted their understanding of the systems, current capacities, limitations and impediments for growth. Information garnered from the existing conditions assessment was used as the baseline for development sign of alternatives.

Stakeholder Engagement

To solicit additional perspectives on what elements function well at the airport and where there are opportunities for improvement, a survey was prepared and submitted to a variety of user groups for response:

- Airlines
- Rental Cars
- Concessions
- Airport Staff, Operations and Facility Management
- City IT
- TSA
- Community Groups
 - Central Oregon Travel Advisory Board
 - Airport Committee
 - Community Leaders

The surveys and subsequent interviews with each group, resulted in the following list of elements/aspects/experiences that were deemed important. All aspects under the scope of this study were included and addressed:

1. Focus on mountain views
2. Provide more concession options throughout
3. Maintain small town feel of the airport
4. Provide more ticket area queuing, ATO and airline operations space
5. Provide more Airport Administration space and another large conference room
6. Consider an upper-level area for public to view the airfield
7. Improve curbside and roadway access (outside the scope of this study)
8. Provide more baggage make-up area
9. Include more storage space (near baggage claim for unclaimed bags and for dedicated custodial)
10. Provide for GSE winter storage (covered, perhaps under expansion)

Preliminary Alternatives

Using the extrapolated forecast data, initial alternatives recognized that the existing ground-level mechanical/electrical plant, immediately west of the existing ticketing area, limits opportunity for expansion in that direction. That, coupled with the data from the existing condition assessment and the stakeholder input, resulted in the following basic massing studies illustrating those elements that would need to be adjusted/enlarged to meet the current demand and the continued growth over time.

Baseline Level
- Expand baggage screening

Ground Level
- Replace Mech/Elec plant
- Enlarge ticket area
- Enlarge bag make-up area
- Enlarge/improve bag claim
- Relocate administration
- Change entry vestibules
- Move rental cars to preserve SSCP expansion space

Upper Level
- Enlarged departure lounge space
- Contact positions for all gates
- New mech/elec plan location
- New admin location
Preferred Concept
Through iteration and coordination with the airport, the recommended layout of the facility is as represented below. The preferred concept, at full build out, accounts for all of the forecasted demand parameters as well as meeting the primary requests from the stakeholder engagement process.

The expansion increases passenger access, allows the capacity of the facility to meet the existing demand based on available apron space, improves ADA accessibility with the addition of multiple contact gate positions, facilitates improved energy efficiency with the relocation and upgrade of the central mechanical and electrical plant components, and provides the opportunity through design to meet sustainability certification criteria.

The aesthetics of the expansion were explored, and three concepts (Flight, Lodge and Airstream) were generated for consideration. Each concept had inspiration rooted in what it means to be in Central Oregon. Of the three, the “Flight” concept was selected to be the basis of moving forward to establish cost and phasing considerations.
Proposed Phasing and ROM Costs
In order to accommodate the variability of funding, the program was separated into five phases to allow for growth to happen over time. The five phases are indicated below, with the rough order of magnitude (ROM) estimated program cost range for each.

- **Phase 1**: West departure lounge expansion and utility plant relocation
- **Phase 2**: Ticket area/ATO expansion and build-out
- **Phase 3**: Baggage claim expansion and reconfiguration
- **Phase 4**: East departure lounge expansion
- **Phase 5**: Interior reconfiguration and administration build-out

![Diagram showing the proposed phasing and ROM costs]

<table>
<thead>
<tr>
<th>Phase</th>
<th>ROM Cost (LOW)</th>
<th>ROM Cost (HIGH)</th>
<th>Hard Construction Cost (LOW)</th>
<th>Hard Construction Cost (HIGH)</th>
<th>Soft Costs</th>
<th>Contingency (LOW)</th>
<th>Contingency (HIGH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1</td>
<td>$99.6M</td>
<td>$109.8M</td>
<td>$11.0M</td>
<td>$12.0M</td>
<td>$16.4M</td>
<td>$16.4M</td>
<td>$19.2M</td>
</tr>
<tr>
<td>Phase 2</td>
<td>$13.7M</td>
<td>$15.5M</td>
<td>$11.0M</td>
<td>$12.0M</td>
<td>$12.0M</td>
<td>$12.0M</td>
<td>$12.0M</td>
</tr>
<tr>
<td>Phase 3</td>
<td>$25.7M</td>
<td>$29.9M</td>
<td>$23.2M</td>
<td>$25.2M</td>
<td>$6.0M</td>
<td>$6.0M</td>
<td>$9.0M</td>
</tr>
<tr>
<td>Phase 4</td>
<td>$30.9M</td>
<td>$36.7M</td>
<td>$31.0M</td>
<td>$33.0M</td>
<td>$18.4M</td>
<td>$18.4M</td>
<td>$24.7M</td>
</tr>
<tr>
<td>Phase 5</td>
<td>$8.8M</td>
<td>$10.7M</td>
<td>$6.8M</td>
<td>$8.8M</td>
<td>$1.3M</td>
<td>$1.3M</td>
<td>$1.3M</td>
</tr>
<tr>
<td>Program Total</td>
<td>$178.7M</td>
<td>$202.6M</td>
<td>$135.6M</td>
<td>$145.6M</td>
<td>$22.8M</td>
<td>$22.8M</td>
<td>$23.4M</td>
</tr>
</tbody>
</table>
CHAPTER 2

PROJECT OBJECTIVES, TEAM, AND PROCESS
2.1 PROJECT DEFINITION AND OBJECTIVES

The City of Redmond selected RS&H (Consultant) to perform services associated with the preparation of a Terminal Area Concept Plan (TACP). This report will present the process and associated results of the aviation planning (comparing Master Plan forecasts to actual enplanement data), conceptual architecture and engineering, and rough order of magnitude (ROM) cost estimating performed.

The TACP includes the following basic elements:

- Review of the existing terminal (Figure 2-1) facilities resulting in a cursory assessment of the capacity of the existing systems to accommodate future growth. Systems considered are structural, mechanical, electrical and IT/security.

- Validation of enplanement forecasts, review of current demand and capacity, consideration of target growth in the market and an understanding of the impact associated with the COVID pandemic on a viable recovery scenario. Comprehensive forecasting is not part of this study. Forecast data from the recently complete Master Plan (Figure 2-2) will be compared with actual enplanement statistics. Coordination with the airport will determine the appropriate design parameters to base the terminal expansion upon.

- Identification of areas of the terminal facility that, based on the proposed recovery scenario, will need to be modified to accommodate growth.

- Solicitation of input from users and stakeholders to inform the characteristics of the expansion and modifications to the facility spaces to improve operational efficiency, mitigate areas of congestion, and improve passenger experience.

- Preparation of alternatives for future expansion. To include an understanding of short, medium and long-term phasing to meet demand.

- Rough Order of Magnitude (ROM) cost estimates for alternatives, understanding how funds would need to be allocated over time to execute construction.

- Recommendation of a preferred alternative that will be the baseline for the procurement of design services to execute the next phase of development.

The recommended modifications described herein will result in a facility that can accommodate the capacity demands, improve ADA accessibility, increase energy efficiency, allow for LEED certification, maximize operational efficiency, and enhance the passenger experience.
2.2 PROJECT TEAM

The Design Team (Figure 2-3) was carefully selected to provide the necessary skillsets to effectively execute the assignment and provide the desired results.

FIGURE 2-3 TEAM ORGANIZATION CHART

RS&H, Inc:
RS&H, Inc. is a national Architecture, Engineering and Consulting firm, with a practice focus on aviation. RS&H has been in business for over 75 years providing, among others, all the necessary services needed by airports: Planning; Environmental; Architecture/Building Engineering; and Airfield Engineering. For this Terminal Area Concept Plan RS&H provided terminal planning, architecture, building engineering, environmental consultation and FAA coordination.

Morrison Maierle, Inc:
Morrison Maierle, Inc. (MMI) consists of experienced airport engineers, planners, and construction representatives that provide a full range of services. MMI currently serves as an on-call consultant at RDM and has a comprehensive understanding of the airside and landside issues. For this Terminal Area Concept Plan, MMI provided airfield/civil engineering and assisted with FAA coordination.

2.3 FEASIBILITY ANALYSIS PROCESS

The process for the Terminal Area Concept Plan (Figure 2-4) is composed of three primary steps as follows:

Terminal Program Validation
- Forecast Validation
- Existing Condition Systems Assessment
- Terminal Facility Requirements
- Public/Stakeholder Input

Concept Development
- Creation of Alternatives
- Cost Estimating
- Phasing and Constructability
- Public/Stakeholder Review and Consensus
- Recommendations for Development

TACP Report
- Assembly of Final Concept Plan Document
- Public Presentation

Construction Focus:
Construction Focus provides construction cost estimates and consulting services to a wide variety of clients, including the federal government, the State of Oregon, Oregon cities, SW Washington State, counties, and airports. For this Terminal Area Concept Plan, Construction Focus will provide cost estimates for various alternatives.
CHAPTER 3

FORECAST VALIDATION
3.1 FORECASTING METHODOLOGY

The Redmond Municipal Airport (RDM or Airport) Terminal Concept Study incorporated the preferred enplanements forecast from the most recent Master Plan completed in 2018. The forecast projected a 3.7% annual growth rate in enplanements increasing the Airport’s annual total from 298,322 in 2016 to 680,750 in 2036. However, when the COVID-19 (Coronavirus or public health emergency) pandemic occurred in 2020, aviation activity forecasts suddenly were focused on the amount of time it would take to return to pre-pandemic (or 2019) levels and how long-term projections would change as a result. In 2018 and 2019 the airport growth was tracking above the 90th percentile line on the Master Plan Enplanement forecast. Originally it is assumed, for the purposes of this report, that once levels recover to those of 2019 that the growth would continue to track on a similar trajectory (solid red line on Figure 3-2). The FAA provided limited guidance on the anticipated recovery period for airports to return to 2019 enplanement totals. In a meeting with FAA held January 2021, the FAA estimated a 9-year recovery period that would result in the airport attaining 2019 level again in 2029. Other industry experts (Fitch Ratings) estimated a more rapid recovery, resulting in 2019 levels being reached by 2024.

At the time of this forecast update, most recent data is suggesting an even more aggressive recovery. Per Cirium Diio Mi™, a service that collects all Department of Transportation (DOT) information reported by airlines, RDM is showing a recovery that exceeds that being experienced by the aviation industry nationwide (Figure 3-2).

Prior to the public health emergency, although the Airport traffic was up, the limitations of the facility to meet that demand started to become apparent. Enplanements, exceeding the Master Plan Forecast’s short-term projection for 2019 with 482,676, a number that was not projected to be reached until sometime after 2024.

As the industry recovers from the pandemic, extrapolating this most recent trend data illustrates that 2019 levels could be reached by late 2021/early 2022 (dashed red line on Figure 3-2). Once the airport returns to the 2019 enplanement levels in this revised COVID-19 recovery-based scenario, and assuming that the trajectory it was on pre-COVID continues, it is anticipated that the Airport will retain its alignment with the 90th percentile line, resulting in a 2036 enplanement estimate of approximately 832,000.

Next the Master Plan Forecast Design Day Flight Schedule (DDFS) for 2018 was compared with an RDM DDFS for an average day of August 2019 for accuracy. Ultimately, the two DDFS had the same destinations, but 2019 had an increase of one additional Seattle-Tacoma International Airport (SEA) frequency; one additional Los Angeles International Airport (LAX) frequency; and a new Chicago O’Hare International Airport (ORD) flight. Therefore, the DDFS for 2019 was used as the baseline schedule, using August rather than June (which was used in the Master Plan Forecast) to better represent the current peak month for 2019.

The DDFS added in load factors1 from August 2019 for enplaning and deplaning passengers, as well as the airline’s equipment and seat totals to generate a total number of passengers for the 2019 design day model. The daily total

1 Bureau of Transportation Statistics T-100 Market data, 2019.
was increased by the ratio of the day to the month of August to reach the August 2019 enplanements total, and then increased by the ratio of the month of August relative to 2019 to reach the annual enplanements total. This study required a DDFS for 2026 based on the updated forecast of enplanements. As a result, the DDFS retained the same DDFS from 2019, and met the projected 2026 enplanment total of 578,828, and 2036 enplanment total of 832,410 from the COVID-19 Recovery Based Scenario forecast.

In order to meet the enplanement growth, the DDFS adjusted the RDM load factor to 85.2% in 2026 and 85.6% in 2036, which were projected by the FAA Aerospace Forecast from FY 2020-2040 for those respective years. Next consideration was given to anticipated changes in the fleet, airlines, and markets to be used in 2026 and 2036 at RDM. The following assumptions were made:

» 2026 Assumptions
 o All CRJ200s (50 seats) would be up-gauged to E175 aircraft (76 seats)
 o All DH4 (76 seats) would be replaced by E175 aircraft
 o All Delta Air Lines (DL) aircraft were up-gauged from E175 aircraft to A220 aircraft (109 seats)
 o A second frequency of the American Airlines (AA) flight to Phoenix, Arizona (PHX) was added on E175
 o New San Diego, California (SAN) market added on E175 aircraft by Alaska Airlines (AS)

» 2036 Assumptions
 o Five of the United Airlines (UA) flights on E75 aircraft were up-gauged to Boeing 737 MAX 8 aircraft (166 seats)
 o Two CR7 aircraft (70 seats) were up-gauged to E175 aircraft by AA and one by UA
 o A third frequency of the AA flight to Los Angeles, California (LAX) was added on E175
 o A third frequency of the DL flight to Salt Lake City, Utah (SLC) was added on A220
 o A new airline was added with three flights daily on a Boeing 737 MAX 8 aircraft (175 seats) with two flights to Denver, Colorado (DEN) and one flight to Las Vegas, Nevada (LAS)

3.2 PASSENGER FLOW SIMULATION

The CAST simulation model suite was used to determine the peak period passenger flows and aircraft gating demands on the terminal. CAST is a simulation modelling software used to evaluate terminal building operations. The analysis incorporated the design day flight schedules for the 2019, 2026, and 2036 demand levels.

3.2.1 Peak Period Counts

The peak period counts for passenger flows and aircraft operations were completed for 20-minute, 30-minute, and 60-minute rolling peaks.

The peak period passenger count analysis included a departing passenger reporting profile that was assumed to represent the passenger behavior on an average day at RDM. The reporting profile assumed that the first passenger of a particular departing flight would enter the terminal building two hours prior to the scheduled departure time and the last passenger would enter the terminal building 45 minutes prior to the scheduled departure time.

For arriving passengers, the analysis assumed the first passenger would disembark the aircraft three minutes after the scheduled block time to represent the delay associated with passenger boarding bridge maneuvering and aircraft door opening. The passenger deplane rate was set at 16 passengers per minute.

The peak period passenger flow analysis results are summarized in Table 1. The departing passenger count represents the number of enplaning passengers entering the terminal building from the landside and the arriving passenger count represents the number of deplaning passengers entering the terminal building from arriving aircraft. The total passenger count represents the greatest combined sum of departing and arriving passengers entering the building throughout the day.

TABLE 1

<table>
<thead>
<tr>
<th></th>
<th>2019</th>
<th>2026</th>
<th>2036</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Departing Passenger Count</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 20-Min</td>
<td>105</td>
<td>119</td>
<td>194</td>
</tr>
<tr>
<td>Peak 30-Min</td>
<td>150</td>
<td>170</td>
<td>285</td>
</tr>
<tr>
<td>Peak 60-Min</td>
<td>274</td>
<td>292</td>
<td>557</td>
</tr>
<tr>
<td>Peak Arriving Passenger Count</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 20-Min</td>
<td>124</td>
<td>195</td>
<td>308</td>
</tr>
<tr>
<td>Peak 30-Min</td>
<td>185</td>
<td>226</td>
<td>360</td>
</tr>
<tr>
<td>Peak 60-Min</td>
<td>310</td>
<td>374</td>
<td>549</td>
</tr>
<tr>
<td>Peak Total Passenger Count</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 20-Min</td>
<td>172</td>
<td>215</td>
<td>322</td>
</tr>
<tr>
<td>Peak 30-Min</td>
<td>244</td>
<td>300</td>
<td>421</td>
</tr>
<tr>
<td>Peak 60-Min</td>
<td>455</td>
<td>560</td>
<td>722</td>
</tr>
</tbody>
</table>

Source: RS&H, 2021

2 DL has shown an increased use out of the A220, with 28 total in their fleet and a commitment to purchase 50 more as of 2019.
The peak period aircraft operations analysis results are summarized in Table 2. The counts represent the number of aircraft departing from and arriving to the terminal building during the peak periods. Note that this does not represent gate demand or the number of aircraft at the terminal building during any given time.

<table>
<thead>
<tr>
<th></th>
<th>2019</th>
<th>2026</th>
<th>2036</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Departing Aircraft Count</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 20-Min</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Peak 30-Min</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Peak 60-Min</td>
<td>5</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Peak Arriving Aircraft Count</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 20-Min</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Peak 30-Min</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Peak 60-Min</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Peak Total Aircraft Count</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 20-Min</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Peak 30-Min</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Peak 60-Min</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Source: RS&H, 2021
3.2.2 Aircraft Gate Allocation

The aircraft gate allocation analysis evaluated scenarios of how flights can be allocated to the available gates based on the design day flight schedules for 2019, 2026, and 2036. The gating analysis was run considering that 11 gates would be available throughout the planning period. For the 2019 flight schedule, the existing aircraft size gate limitations were considered. For the 2026 and 2036 flight schedules, the analysis assumed that each gate could accommodate ADG-III aircraft. The analysis assumed each airline had designed gates that were preferential to their airline only. The analysis also assumed a 15-minute buffer time between all flights. The analysis assumed that aircraft would remain overnight at the gate, as applicable.

The analysis results show that the greatest demand for terminal gates occur overnight to accommodate remain overnight aircraft for the design day in 2019 (Figure 3-6), 2026 (Figure 3-7), and 2036 (Figure 3-8). Nine gates can accommodate the aircraft gating demands for the 2019 and 2026 design day flight schedules. In these gating scenarios, nine aircraft would remain overnight on-gate. Eleven gates can accommodate the aircraft demands for the 2036 design day. In this gating scenario, 11 aircraft would remain overnight on-gate. The additional overnight gate demand reflects the forecast assumption of a new airline entrant starting operation at RDM with two aircraft remaining overnight.

The schedules used for 2026 and 2036 represent the most realistic growth scenarios with the most appropriate aircraft types in production today. Due to the nature of business versus leisure travel, the growth projections of the city, and airline operations, it is assumed that any further growth beyond the schedules used for this analysis will involve upgauging existing aircraft or adding additional flights in the off-peak times where the airport is underutilized. Since many of the aircraft shown are regional jets, significant growth opportunities exist just by increasing the aircraft size of the already-allocated flights.
CHAPTER 4
EXISTING CONDITION ASSESSMENTS
4.1 ARCHITECTURAL ASSESSMENT

The current terminal facility, as expanded in 2008, is divided into three separate buildings (as defined by the building code): a North Building; a South Building; and a Mech/Elec Building (Figure 4-1). The north and south buildings are both mixed-use in that they accommodate code allowed occupancies that include Assembly (A-2/A-3), Business (B-1), Storage (S-1), and Industrial (F-1). Each building is isolated from the others via 3-hour fire separation walls.

In order to achieve maximum efficiency in the development of any future expansions the intent will be to modify the building appropriately to meet the Oregon Structural Specialty Code (OSSC) code Section 402 requirements for a Covered Mall building. Doing so allows for unlimited enclosed building area and an open plan that enables the facility to operate as an airline terminal building. In addition, this provision largely negates the need to protect structural steel with fire proofing by requiring fire sprinklers throughout which can be a cost savings.

4.1.1 Initial Elements for Consideration

The initial assessment of the facility resulted in the identification of a number of elements to be addressed as part of the TACP as indicated in Figure 4-2.

1. Revolving Doors – At each of the primary entry points, and in the transition from airside to landside, revolving doors are currently used. The Airport desires to replace these with more traditional vestibules and a breach control system to reduce injury and malfunction.

2. Landside Concessions Space – Currently the concession space on the plan north side of the building is unused. There is not a landside focused concession available to passengers or tenants. The intent will be, with the anticipated growth, to provide opportunities for concessions in this location as well as additional options on the airside.

3. Ticketing Area – There are some underutilized portions of the ticketing due to some area impacted by some seating. Also, in peak times, the queuing for the ticket area exceeds the available space and can obstruct circulation paths. In addition, the number of ticket agent positions is limiting to the possibility of future entrant airlines. (Figure 4-3)
4. **Security Screening Checkpoint** – Under the current configuration the security screening checkpoint (SSCP) is trapped between the ticket area on the west and the rental car area on the east. There is no room for this processor to expand if needed.

5. **Bag Claim Area** – In peak conditions the bag claim area becomes overcrowded. There is limited opportunity for the bag claim area to expand in its current configuration to accommodate additional flights. Also, the seating located between the devices and rental car area can impact flow. *(Figure 4-4)*

6. **Rental Car Queuing** – Due to the proximity of rental car to bag claim and location of the interior seating, peak conditions can generate conditions of overcrowding.

7. **Baggage Make-Up** – Additional baggage make-up area is needed as the current configuration often results in bags falling off conveyors and carousels. There is not adequate space for the tugs from each carrier to park along the carousels to retrieve bags. The current oversized baggage process is ineffective and requires significant manual baggage manipulation that severely reduces efficiency.

8. **Departure Lounge** – The current lower-level departure lounge is configured as a single open space with a call to gate protocol. This area was sized to accommodate commuter aircraft and was not intended to include passenger boarding bridges. As airlines begin to employ larger aircraft and the number of flights increases, the departure lounge space becomes undersized very quickly.

9. **Upper-Level Space** – The upper-level space, although available for passengers, is most often underutilized.

4.2 STRUCTURAL SYSTEMS ASSESSMENT

The structural engineering systems assessment was based solely on review of the existing record documentation provided by the airport, and a follow up conference call held with the airport staff on Wednesday, January 13, 2021.

The existing terminal roof structure is comprised of metal roof deck supported by steel beams and steel columns. The second floor consists of a composite concrete slab on metal deck supported by steel beams and girders. The existing foundation system is concrete spread footings on a compacted subgrade. Lateral forces (i.e. wind and seismic) are resisted by steel moment frames. As this is a seismic design category B, the seismic force resisting system is defined as 'structural steel systems not specifically detailed for seismic resistance'.

Any expansion/addition will be comprised of similar structural systems.
4.3 MECHANICAL SYSTEMS ASSESSMENT

The mechanical engineering systems assessment was based solely on review of the existing record documentation provided by the airport, and a walk through of the airport facility in April 2021.

4.3.1 HVAC System

The existing HVAC system at RDM consists primarily of a chilled water cooling and hot water hydronic heating system, with interior air handling units serving primarily under slab ductwork that is routed to displacement diffusers in the main hold room, ticketing, and bag claim areas. There are some office spaces that utilize overhead duct distribution with Variable Air Volume (VAV) terminal units to serve individual spaces. Additional heating for the building is provided by in-floor radiant heating in certain perimeter areas near building entry vestibules and in the boarding halls that lead out to the aircraft boarding positions. The systems are controlled by a central Building Automation System (BAS). The systems were installed in 2007 and are in good operating condition according to discussions with the airport staff.

Chilled water for cooling is produced by two water-cooled chillers. One chiller is a centrifugal type rated for 250 tons of capacity, the other chiller is a rotary screw type, rated for 150 tons. The chilled water fluid is a 40% propylene glycol mix primarily for freeze protection. The airport confirmed that the sequencing of the chillers operates the smaller chiller during milder temperatures and the larger chiller operates when outdoor temperatures are above 90 degrees. The airport confirmed that rarely do both chillers operate concurrently.

Chilled water is distributed via centrifugal end-suction pumps in primary/secondary pumping configuration. There are two cooling towers for the chilled water system located on the roof above the mechanical room with a remote condenser water sump located in the mechanical room. The cooling towers are sized for approximately 213 tons of heat rejection and are configured for Duty/Stand-by operation. The airport confirmed that one tower provides sufficient heat rejection due to the thermal storage capacity provided by the remote sump. The condenser water pumps are constant volume centrifugal end-suction pumps.

Heating for the terminal is provided by two, approximately 3000 MBH, gas fired hot water boilers. The boilers are configured in a Duty/Stand-by configuration. The interior air handlers have heating coils, and the VAV systems have hot water reheat coils at the terminal units. The hot water is distributed through the building via a primary/secondary pumping arrangement with end-suction centrifugal pumps with variable frequency drives. Additional in-line heating zone pumps are also provided to circulate hot water through the in-floor radiant tube sections throughout the airport. The hot water piping was designed for future expansion and has multiple locations with valued and capped locations for future connection. Therefore, it is believed that the existing hot water boilers have additional capacity available, but the exact amount is not known, and has not yet been calculated.

The mechanical room is currently positioned in the northwest quadrant of the terminal building. It’s location impedes possible expansion of the ticketing hall to the west. Due to the nature and location of the proposed concourse expansions, it will be difficult to extend the existing cooling systems to serve the expansions. Given that the proposed expansions will eliminate the existing boarding hallways and likely the in-floor heating systems associated with them, there is a potential to extend the existing heating distribution system to serve at least a portion of the heating requirements for the expansions. Discussions with the airport indicated that the airport was acceptable to providing new, independent systems to serve the expansions.

4.3.2 Plumbing System

The plumbing systems were installed 2007 as part of that terminal expansion project. The plumbing systems in the terminal building consist of touchless, sensor operated flush valve toilets and urinals, and touchless, sensor operated lavatory faucets.

Domestic cold water for the building is provided by a 4" domestic water main that enters the building in the mechanical room. There is a separate 2-1/2" domestic water line stubbed into the building at the northwest corner of the building for a future landside kitchen/restaurant build-out that has not been built to date, and the area is currently used as storage.

Hot water for the terminal plumbing systems is provided by two (2) gas fired water heaters, with a hot water recirculating system. The water heaters are located in a mechanical room near the center of the terminal. There is space provided for two additional future water heaters for the kitchen/restaurant build-out.

Natural gas is provided to the building by a 3" gas main and meter located at the main mechanical room. There is a separate 1-1/2" gas service stubbed into the building at the northwest corner for a future kitchen/restaurant build-out.

Sanitary drainage is conveyed through the building to exit point on the northwest side of the building. The existing gravity main is a 6" line which has adequate capacity for the current building drainage loads.

Storm drainage for the terminal is provided by primary roof drains with secondary overflow drains. The primary drains are piped internally throughout the building and connect to an 18" stormwater site main at the northwest corner of the building. Overflow drains are piped independently to overflow downspout nozzles located on the building exterior above grade.

Additionally, there is a sanitary waste, and storm drainage lift station located in the southwest quadrant/basement area of the terminal that collects sanitary drainage from fixtures located above the basement, and storm water from a 6" foundation drain system. This system discharges through 2" force mains to a site force main located nearby.

Provisions were made in the 2007 expansion design for the installation of a grease interceptor to serve the future kitchen, but the interceptor is not currently installed.

4.3.3 Fire Protection System

There are four 6" fire mains that serve the terminal. The mains enter the building in the northwest quadrant of the building. Two 6" lines enter into the main mechanical room, and two other 6" lines enter into the basement. The fire mains serve various zones throughout the terminal building. The interior hold room, ticket lobby, bag claim and office areas are provided with a wet pipe fire sprinkler system. Exterior canopy areas are provided with dry pipe sprinkler systems. The boarding halls are provided with a deluge sprinkler system due their proximity to aircraft fueling points.
4.4 ELECTRICAL SYSTEMS ASSESSMENT

The electrical engineering systems assessment was based solely on review of the existing record documentation provided by the airport, and a walk through of the airport facility in April 2021. The current electrical systems throughout the terminal consist of two switchboards, with associated distribution panelboards, transformers, lighting systems and general power systems. These systems are original to the building construction.

4.4.1 Electrical Distribution System

Currently, there are two switchboards (SSA and FAA) in the building that are original to the building construction. The SSA switchboard is a Square-D QMR fused disconnect type distribution which is currently obsolete. The associated distribution systems consist of distribution panelboards, and transformers of the same period, most are in fair to good condition, and are in the expected condition for their ages. The exterior NEMA 3R disconnects are in poor shape due to corrosion and need to be replaced with new NEMA 4X units.

There are two emergency generators. One generator serves the building, and the other generator is dedicated to the FAA tower and air traffic control facilities. The building generator is in need of a complete replacement. The building generator only feeds life safety loads. It is highly desirable to have additional capacity and a second transfer switch for optional standby loads such as screening and other critical non-life safety loads. The FAA tower generator is owned and operated by the FAA, and is, therefore, outside the scope of this evaluation.

The public areas of the terminal building have limited access to power outlets. The pre-screening waiting lounge and the post-screening hold rooms do not have passenger accessible convenience charging or outlet stations.

4.4.2 Lighting System

Currently the lighting system consists of fluorescent, high pressure sodium, incandescent, and metal halide fixtures. The existing terminal landside lobby including the meet/greet area, ticketing and baggage claim, is illuminated using metal halide fixtures with magnetic ballast that are run 24 hours per day. These rooms also include areas with T12 magnetic ballast fluorescent and incandescent fixtures.

The existing terminal airside, including hold rooms, is illuminated using fluorescent fixtures that are run 24 hours per day. There is substantial glazing in both these areas. Retail spaces have a good amount of inefficient incandescent lighting.

There is no overall building lighting control system for automatically shutting down lights based on time of day or other controls. Photocell controls and occupancy sensors for some rooms and exterior lights are in place on a limited basis.

There are several areas with large windows which provide an opportunity for daylight harvesting. There are several areas under it due to fixtures with poor or no optics. Many areas do not take advantage of ceiling reflectance to increase the light levels. Also, dull and non-reflective finishes reduce the lighting effectiveness.

The office areas, security checkpoint, baggage handling and equipment spaces are lit using fluorescent fixtures.

The Airport has begun systematically replacing lighting elements in response to the recommendations of an energy audit (2015).

The apron lighting is currently high-pressure sodium and is in fair condition. The parking lot lights are also high-pressure sodium and are in fair condition due to age. The other exterior fixtures are combination of metal halide, and high-pressure sodium. The parking lot lighting poles and fixtures are provided by Georgia Power under a monthly use agreement. Georgia Power has recently upgraded fixtures to modern energy-efficient LED fixtures which provide higher light output and lower energy consumption.

4.5 INFORMATION TECHNOLOGY / LOW VOLTAGE SYSTEMS ASSESSMENT

The information technology/low voltage systems assessment was based on the review of available existing record documentation provided by the airport, a discussion with the City of Redmond IT staff in January 2021, and a walk through of the airport facility in April 2021.

4.5.1 Communication System

The existing communication system consists of fiber optic and copper backbone cables connecting intermediate distribution frames (IDFs) to the main distribution frame (MDF) with a star topology. The MDF serves as the main entry point for communications into the building. The MDF is located on the ground floor adjacent to the ticket lobby. It was noted by the Owner that on occasion there has been water intrusion from the adjacent mechanical space. This room contains terminations for multiple outside plant cables (copper and fiber). The space is not conditioned and is not suitable for active hardware.

There are seven (7) IDF rooms ranging in size from 30 to 80 sq ft. These rooms do not meet the TIA 569 Telecommunications Pathways and Spaces standard requirements. Each IDF has a 6-strand single-mode fiber homerun to the MDF for City managed IT systems (Data, Access Control, Video surveillance, Wi-Fi, and Telephone) with additional fiber belonging to tenants (Airlines/vendors). In general, the IDFs are full and lack necessary space for expansion. Access to the IDFs is restricted; however, equipment owned and maintained by the City and third-party tenants and vendors share rack/wall space. Rack mounted UPS units connected to emergency power are maintained by the City.

Voice over IP (VoIP) telephones in the terminal are connected to network switches managed by the City IT department. Airlines and vendors requiring phone service are required to provide their own phone system and acquire service from a third-party service provider.

Wireless Fidelity (Wi-Fi) and Cellular coverage are currently adequate on the main level of the terminal. To expand these systems to the basement level or expanded areas of the Terminal will require additional infrastructure.

Power, cooling and fire suppression the MDF and IDFs should be evaluated further prior to expansion. The existing systems are not adequate to accommodate expansion and will need to be upgraded or replaced.
4.5.2 Access Control System

The existing Access Control System (ACS) is Symmetry manufactured by AMAG Technology. The system was updated approximately one (1) year ago and is running the latest version of Symmetry software. The system has approximately forty-two (42) doors including perimeter vehicle and pedestrian gates. The IP-addressable intelligent door controllers are connected to a dedicated security network. Doors with electrified hardware and card readers with integrated keypads control access to the SIDA, AOA, equipment rooms and other non-public areas.

Locking arrangements for the access-controlled doors will be designed to meet TSA and life safety code requirements. Doors separating the sterile area from public area or the AOA will be equipped with time-delay locking where allowed by code. Where allowed, these doors will be provided with card readers on both sides to allow authorized users to enter or exit the sterile area.

The AMAG ACS software has standard integration to the Ocularis video management system (VMS) available. Currently, the ACS and Ocularis VMS are not integrated. Integration would allow video associated with alarm events to automated queue up on the operator’s workstation for alarm assessment. It is recommended that Airport Security review this function and the available features of ACS/VMS integration and include it as part of a future project.

4.5.3 Video Surveillance System

The existing Video Management System (VMS) is Ocularis by Qognify. The existing surveillance cameras are multi-sensor IP addressable cameras manufactured by Axis and installed by Convergint. There are approximately twelve (12) existing cameras that provide coverage throughout the terminal with limited coverage of the exterior. It was noted by the Owner that additional camera coverage is desired including the parking lots, landside terminal, departures lobby, hold rooms, and AOA ramp. A recent lighting project installed additional conduits to the landside parking lots that may be used to extend the security network.

The system has no integration to the access control system (ACS) for monitoring, refer to the previous section for more information.

4.5.4 Public Address System

The existing public address system is an older analog system. The system consists of speakers, noise sensors and dedicated microphones connected to an amplifier located in the MDF. It is recommended that the system be replaced with a computer-based system (IP based or an IP/analog hybrid).

4.5.5 Flight Information Displays

Flight information displays including arrivals/departures and baggage information are located in the landside lobby and baggage claim as well as in airside hold rooms.

4.5.6 Passenger Information Displays

There are several passenger information and advertising displays and kiosk in the landside areas and airside hold rooms. These displays provide advertising messaging and local information for passengers.

4.5.7 Gate Information Systems

There is one ceiling mounted gate information display (GID) per gate counter.

4.5.8 Cable Television

There are a limited number of TVs on the airside connected to satellite service providers.

4.6 CIVIL INFRASTRUCTURE

4.6.1 Domestic Water and Fire Protection

The existing terminal building water is provided by the City of Redmond. The City of Redmond water system is primarily sourced from a combination of wells and storage tanks. The water main serving the terminal building is 12” PVC that transitions to 8” DI in the vicinity of the terminal building. The terminal building domestic and fire sprinkler service is located on the west side of the building in a combined fire/domestic water meter vault. (Figure 4-5)

![Fig 4-5 Terminal Building Water System Infrastructure]
The terminal building has 5 fire hydrants, 2 on the land side, and three on the airside of the terminal building. All 5 fire hydrants are within 250 feet of the terminal building, allowing the max capacity for fire flow evaluation to be 1,500 gpm, if available from the system.

The fire flow information shown on the City of Redmond website indicates that following estimated flow rates (Table 3):

<table>
<thead>
<tr>
<th>Hydrant #</th>
<th>Location</th>
<th>Flow (gpm)</th>
<th>Residual Pressure (psi)</th>
<th>Year of Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>FH1651</td>
<td>SW Corner - Airside</td>
<td>1,210</td>
<td>64</td>
<td>2012</td>
</tr>
<tr>
<td>FH0231</td>
<td>NW Corner - Landside</td>
<td>1,210</td>
<td>64</td>
<td>2012</td>
</tr>
<tr>
<td>FH0567</td>
<td>NE Corner - Landside</td>
<td>1,622</td>
<td>45</td>
<td>2017</td>
</tr>
<tr>
<td>FH1650</td>
<td>NE Corner - Airside</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>FH1652</td>
<td>Center – Airside</td>
<td>1,190</td>
<td>64</td>
<td>2012</td>
</tr>
</tbody>
</table>

Flows are based on information from City of Redmond and are not valid for design purposes. Actual flows will need to be tested.

The City of Redmond has a model of the existing water system. Once in design, the design team will need to coordinate with the City to validate the actual fire flow availability to the facility.

The required fire flow for the proposed expansion will need to be evaluated and compared to the available fire flow to determine if there are any deficiencies in the system.

National Fire Protection Association (NFPA) 1 (2021) has special requirements for fire protection for terminal buildings. There are special requirements for glazing, exterior fire sprinklers, or shutter systems.

Expansion of the upper-level hold room to the east may impact the domestic water main to FH 1650. Rerouting of the main to the fire hydrant may be required depending on final footing locations.

Expansion of the upper-level hold room to the west will not have any direct impacts on the domestic water mains, however the foundations for the passenger boarding bridge tunnel to the west jet bridges may potentially have impacts to the domestic water main and FH 1651.

Fire hydrant 1652 and FH 1650 are on long dead-end lines. Installation of approximately 500 linear feet of water main along the airside terminal frontage would loop the main around the building. Installation of this line should be evaluated to determine if there is any significant benefit in increased hydrant flows if the loop was installed.

4.6.2 Sewer

The existing terminal building sewer is provided by the City of Redmond. An 8’ concrete sewer main serves the existing facility. The sewer services for the terminal building are located on the west side of the building. There are three sewer service connections from the terminal building to connect to the sanitary sewer system. (Figure 4-6)

4.6.3 Storm Drainage

The storm drain system in the vicinity of the terminal building is a combination of storm drain piping and drywells. The roof drainage from the building is disposed of through drywells on the west and east side of the building. The terminal apron storm drainage is collected in a series of catch basins. The catch basins are approximately 130’ from the building. The stormwater is collected and routed to an infiltration pond west of the terminal apron. There currently is not a system for collecting or treating the glycol that may intermix with the stormwater during the winter months. There is a manhole with a diversion weir on the west side of the apron to allow for the connection of a recycling / treatment system, if required, in the future.
The stormwater from the vendor lot and the airline operations area west of the terminal building also is disposed of in the terminal apron infiltration pond.

Prior to the connection to the storm pond, a sedimentation manhole with storm water hoods is provided to separate out hydrocarbons and prevent floatable trash from entering the stormwater pond.

Storm water on the east side of the building is collected in storm drain inlets and connected to the parking lot storm drainage system. The parking lot storm drain system terminates at the north detention pond near runway 11.

The capacity of the terminal apron retention pond the parking lot detention pond will need to be evaluated prior to adding additional storm drainage to the facility. (Figure 4-7)

4.6.4 Power, Communications, and Natural Gas

The power for the terminal building is provided by Pacific Power and Light (PPL). The electrical service panel is located west of the terminal building adjacent to the trash compactor. Historically the airport has had issue with the power supply to the building due to failures in the direct bury primary serving the building. The airport is currently looking at adding a new primary power run to the terminal building to eliminate the direct bury power. The genset for the terminal building is located north of the rental car lot. The genset is connected to limited circuits in the existing terminal building.

There are several communication service providers that provide service to the area, Century Link, Bend Cable, etc. The terminal building currently does not have a fiber optic connection. However, conduits were installed with the parking lot project in 2019 to provide a pathway for a future fiber optic connection from Airport Way.

The natural gas for the terminal building is provided by Cascade Natural Gas. There is a 4" service connection on the west side of the building. (Figure 4-8)

The proposed expansion of the terminal facility may have impacts on storm drainage. Most of the expansion of the building will occur over surfaces that are currently impervious. The disposition of the storm drainage should be evaluated to determine the best method for routing of the storm water.

The existing apron drainage currently does not have a shut off valve on the storm drain line in the event of a major fuel spill. A storm water valve manhole should be installed prior to the retention pond.

Expansion of the terminal building and the installation of passenger boarding bridges along the apron will have impacts on existing underground electrical conduits and circuits that serve the existing apron lighting and aircraft ground power receptacles. The conduits will need to be rerouted around the proposed expansions.
4.7 AIRFIELD ELEMENTS

4.7.1 Aircraft Fleet Mix
The current aircraft fleet mix used by the airlines is a mix of regional jets, narrow body jet, and turboprop aircraft. The Terminal Flow Management System Counts (TFMSC) from January 2019 to December 2020 showed the following aircraft (Table 4) used by the airlines for passenger service to the airport. Aircraft with less than 10 annual operations were removed from the list. It shall also be noted that the data includes 2020 data, which had significantly reduced numbers due to the coronavirus pandemic.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A319 - Airbus A319</td>
<td>C-III</td>
<td>3</td>
<td>220</td>
</tr>
<tr>
<td>A320 - Airbus A320 All Series</td>
<td>C-III</td>
<td>3</td>
<td>107</td>
</tr>
<tr>
<td>B734 - Boeing 737-400</td>
<td>C-III</td>
<td>3</td>
<td>23</td>
</tr>
<tr>
<td>B735 - Boeing 737-500</td>
<td>C-III</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>B738 - Boeing 737-800</td>
<td>D-III</td>
<td>3</td>
<td>39</td>
</tr>
<tr>
<td>CRJ2 - Bombardier CRJ-200</td>
<td>C-II</td>
<td>18</td>
<td>2,178</td>
</tr>
<tr>
<td>CRJ7 - Bombardier CRJ-700</td>
<td>C-II</td>
<td>2</td>
<td>1,905</td>
</tr>
<tr>
<td>CRJ9 - Bombardier CRJ-900</td>
<td>C-III</td>
<td>2</td>
<td>34</td>
</tr>
<tr>
<td>D850 - Bombardier Q-400</td>
<td>B-III</td>
<td>5</td>
<td>3,877</td>
</tr>
<tr>
<td>E120 - Embraer Brasilia EMB 120</td>
<td>B-II</td>
<td>3</td>
<td>502</td>
</tr>
<tr>
<td>E75L - Embraer 175</td>
<td>C-III</td>
<td>3</td>
<td>5,878</td>
</tr>
<tr>
<td>E765 - Embraer 175</td>
<td>C-III</td>
<td>3</td>
<td>1,232</td>
</tr>
</tbody>
</table>

RDM currently serves a variety of types of aircraft ranging from A319 with a 118’ wingspan to EMB120 with a 65’ wingspan. Regardless of the aircraft size, each aircraft that is parked on the apron utilizes one of the available parking positions.

The Q400 is the critical aircraft (TDG 5) for taxiway design requiring 75’ wide taxiways. Once the Q400 is retired and no longer in the fleet mix, the design standards will be TDG 3.

The change in the TDG would have effects on the taxiway to taxilane separation requirements for the apron. This change may allow for the aircraft to be parked further from the terminal which will allow for additional length on the passenger boarding bridges.

4.7.2 Aircraft Parking
The terminal apron was expanded in 2018 to provide for additional aircraft parking. Prior to the 2018 expansion the aircraft parking was a power-in power-out operation. In 2017 the terminal apron was restriped to a power-in push back operation. This allowed the airport to decrease the spacing of the parking positions and increase the available positions from 8 to 9 regional aircraft stalls. The terminal apron expansion project provided two more parking positions for a total of 11. Currently there are 3 parking positions for 737 sized aircraft and 8 parking positions for regional jets. (Figure 4-9)

With the current size of the apron, 11 parking positions could be provided for 737 sized aircraft. A total of 13 parking positions could be available if they were all sized for regional jets.

A total of 12 parking positions can be accommodated with a combination of five 737 sized stalls and seven regional jets.

The depth of the terminal ramp is limited by the taxilane on the bottom (south) side of the apron. Currently there is 192’ available between the terminal and the object free area of the taxilane for aircraft parking and the baggage road. In the future when the runway is extended, the runway visibility zone will intersect the most easterly parking position. This will require that the parking position is reconfigured or relocated. However, with the runway extension, there will be additional available space to the west to expand the terminal apron.
The airport would prefer to maintain the number of airline parking position for the terminal while providing passenger boarding bridges at all or a portion of the parking positions. It is planned that this can be accommodated with a combination of second level passenger boarding bridges and ground level passenger boarding bridges.

Three factors control the location of the parking positions with passenger boarding bridges, ramp elevation, aircraft door sill height, and terminal floor elevation. The main floor elevation of the passenger hold room are at 3067.16, and the second-floor elevation is 3081.16. The aircraft parking ramp elevations vary along the front of the building but generally range from 3067.66 at the high point to 3063.67 at the low point. The combination of these three elevations affect the required length of the passenger boarding bridge which has slope limitation due to ADA requirements. The depth of the terminal parking ramp also provides constraints on the location of the aircraft parking positions.

The separation from Runway 5-23 is also a consideration for aircraft parking positions. The tail heights of some larger aircraft penetrate the FAR part 77 transitional surface. The B737 series aircraft have a tail height of approximately 41.42 feet. The three western aircraft parking position provide adequate separation (given differences in ground elevation) for the tail of the aircraft to be clear of part 77 surfaces, however, the eastern parking positions do not and would be an obstruction. The tails obstructing the part 77 surface were evaluated to determine if it is a hazard and if there are any impacts to approach minimums due to the obstruction (see Section 6.1.2).

4.7.3 Pavement Sections

The existing pavement sections in the vicinity of the terminal building are a combination of asphalt and Portland cement concrete pavement sections. The original terminal parking apron is PCC pavement with 12" of PCC, 8" P-209 aggregate base, and 12" P-154 aggregate base. Changes in the fill mix and the FAA design methodology indicate that new designs should be 14.5" of PCC, 12" P-209 Aggregate base. The thicker pavement section was used in the 2018 expansion of the terminal apron to the west. The PCN for the original concrete section and the new concrete section are 54/R/B/X/T and 69/R/B/X/T respectively.

The pavement strength of the existing concrete on the terminal apron is adequate to accommodate the proposed aircraft that will likely use the facility on a regular basis in the future.

The asphalt pavement sections in the vicinity of the terminal building are primarily used by aircraft support equipment. The existing asphalt sections are 4" of asphalt on 6-8" of aggregate subbase.

Depending on the final layout of the aircraft parking positions, expansion of the terminal parking apron could be necessary. The proposed expansion will require reconstruction of portions of the aircraft support areas to accommodate reconfiguration of these areas.

4.7.4 Aircraft Ground Equipment

The aircraft are fueled by the FBO. The FBO is located on the opposite side of the airfield, the fuel trucks use a combination of service roads and active taxiway to access the terminal apron. The masterplan recommended the construction of a separate fuel road to remove the vehicular traffic from the movement area.

The baggage road exits the outbound baggage area and travels to the west side of the terminal apron, crosses behind the aircraft to the east side of the apron to the inbound baggage terminal on the east side of the building. The baggage road behind the aircraft is located on the edge of the taxi lane OFA. There is the potential additional room, 12 ft could be provided in the future if the taxiway design group changes from TDG 5 to TDG 3 in the future. This would require that the Q400 aircraft no longer being the critical design aircraft for the taxiways.

Expansion of the terminal to the west, outbound baggage expansion, passenger boarding bridge walkways, and the jet bridges may have impacts to aircraft ground equipment circulation and staging. Much of the current equipment that is staged at the aircraft parking positions may not be needed in the future with the installation of the passenger boarding bridges. There still need to be room for staging baggage carts, lavatory carts, and deicing equipment. Reconstruction of the outbound baggage road from the building will be required to account for the grades out of the outbound baggage doors. This may also have impact on the airfield access gate and trash compactor location.

The easterly expansion of the upper-level hold room may extend over the existing roads for the inbound baggage. The inbound baggage road may need to be relocated which would encroach on the rental car parking lot.

4.7.5 Passenger Boarding

Currently, all aircraft passengers are ground boarded. Passenger boarding ramps are parked adjacent to the parking positions and pushed to the aircraft for use. The PBR'S create difficulties for snow removal operations.

Upper-level hold room expansion will provide for passenger boarding bridges on the west and east sides of the terminal. The center section of the terminal will provide for a combination of either direct ground loading out of the existing lower-level departure lounge, or upper-level passenger boarding bridges.

4.7.6 Aircraft Ground Power

Currently receptacles are provided on the face of the terminal building or at electrical risers or lighting poles. This creates locations where power cords are crossing passenger pathways, which can be a tripping hazard.

Passenger boarding bridges included as part of the expansion will provide for separation between passengers and aircraft support equipment. This will provide for a safer operating environment for passengers and airline workers as well as providing an additional level of security. Aircraft ground power can be provided on the passenger boarding bridges, which will also reduce potential for conflicts with passengers.

4.7.7 Apron Lighting

Currently the terminal apron is lighted with a combination of LED and sodium halide fixtures on 60’ poles. The airport has expressed interest in converting to all LED fixtures for the ramp lighting.

Expansion of the terminal building and the installation of passenger boarding bridges and walkways may have impacts on the location of the existing apron lighting.
CHAPTER 5

STAKEHOLDER ENGAGEMENT
5.1 STAKEHOLDER SURVEYS AND INTERVIEWS

Community involvement has always been a critical part of this project. The airport recognizes the importance of making sure that the public understands the need for airport expansion, is in favor of the magnitude of the expansion, and has the opportunity to be involved in selecting the aesthetics, feel, and experience of the final product.

The Airport identified the different groups that it was interested in soliciting information from. The design team put together an on-line survey and then invited members of each user group to respond.

User groups were separated into five different factions:
- Airlines
- Rental Cars
- Concessions
- Airport Staff, Operations and Facility Management
 - City IT
 - TSA
- Community and Other
 - Central Oregon Travel Advisory Board
 - Airport Committee
 - Community Leaders

Questions ranged from specifics such as how many ticket counter positions might the different airlines need in 5 and 10 years based on expected growth?, to more thought provoking like, what is your vision for the future of the airport as it relates to the continued growth in Central Oregon?

Surveys were followed up with interviews of the various user groups to garner clarification on responses and offer the opportunity for additional input.

The responses were tabulated and resulted in the major considerations that may have spatial implications and those that have systems related implications.

5.1.1 Stakeholder Considerations – Spatial Related

Spatial related items are those that with their inclusion might require additional space (i.e. expansion) of the facility.

11. **Mountain Views** – Many wanted to make sure that the configuration of the facility accommodated the spectacular mountain views that are afforded from the upper level of the terminal building. Opportunities to perhaps even experience the outdoors while waiting for one’s aircraft was considered a special experience that could establish a uniqueness for RDM among similar sized airports.

12. **More Concession Options** – The current concession options are very limited. Passengers and tenants alike are all in favor of providing a more varied concession experience on both the airside and landside. From a feasibility standpoint, the concessionaire recognizes that consistent traffic and an available workforce will be paramount in provided additional options.

13. **Maintain Small Town Feel** – The community is very proud of the small town feel that the airport has, and its reference to mountain living. It is important to maintain that sense of place even as the facility gets larger and busier.

14. **More Ticket Area Queuing, ATO and Airline Ops Space** – Airlines commented that the available space for queuing, ops space and ATO space is limited and with the addition of new carriers, will make it even more so. Intent will be to increase the amount of available airline space.

15. **More Airport Administration Space and Another Large Conference Room** – Currently the administration area is at full capacity. Airport staff recognizes that any additional hiring that they may need to do to align with the forecasted growth would result in some sort of a split operation. Some staff would have to be located separately from the main landside offices. The request is for more offices to allow for growth and to provide additional conference/meeting space.

16. **Upper-Level Area for Public to View Aircraft** – The airport has the opportunity to provide some landside accessible viewing space of the airfield. This is looked at by the community as an attraction that might generate more interest in the facility.

17. **Improve Curbside (dedicated TNC areas)** – Although the curbside, roadways and parking facilities associated with the airport are not part of this study, it was recognized that the curbside does get congested in peak times and future adjustments should be made to alleviate congestion.
18. More Baggage Make-Up Area (more tug frontage) – The area where bags are retrieved after being screened in order to be transported to the aircraft is congested an often does not work well. Airlines would like additional baggage make-up area and frontage for tugs to make the loading process more efficient.

19. More Storage Space (near baggage claim for unclaimed bags, dedicated custodial) – There is a lack of available space near the existing baggage claim to store baggage that hasn’t been picked up, etc. Airlines have requested some dedicated space to facilitate this activity.

20. GSE Winter Storage (perhaps under expansion) – The opportunity to provide covered storage of ground service equipment could be a natural byproduct of creating upper-level departure lounges.

5.1.2 Stakeholder Considerations – Systems Related

Systems related items are those that with their inclusion would improve the experience of the passenger, efficiency of terminal maintenance, or assist in the operations of the facility.

1. Improve Signage / Monitors – The desire is to improve signage and the number/location of monitors to provide accurate information to passengers at all stages along their movement through the terminal.

2. Airline Space (more access to electrical receptacles) – Within the ATO and Airline Ops spaces there have been complaints of not enough access to electrical outlets. This expansion should in part remedy that.

3. Improve Oversize Bag Belt – the current system of transporting and screening the oversized bags in inefficient and often does not work as needed. The existing system can accommodate bags that are longer than usual, however bags that are too wide/tall will not go down the conveyor and have to be manually transported.

4. Improve Electrical On Ramp – There are not adequate plug-ins along the ramp for charging of equipment.

5. Improve CCTV Coverage Throughout – Both the Airport and the City IT department recognizes the need for more complete CCTV coverage of the facility inside and out.

6. Stronger Wi-Fi Throughout – For both passenger experience and tenant usage, a more powerful Wi-Fi system would be beneficial.

7. Water Source in Make-Up Area for Cleaning – the baggage make-up area currently does not have a water source for cleaning. As part of the expansion, water will be provided.

8. Improve Lighting, Temperature, and Sound Absorption in TSA Checkpoint – TSA officers have requested improvements to the lighting, temperature and sound attenuation in the checkpoint area. As part of a future project focused on the checkpoint, these elements can be addressed.

9. Upgrade Lighting to LED – the Airport has a desire to update all lighting to LED. All areas impacted by the expansion(s) will account for LED fixtures.

10. Plentiful plug-ins with USB Connections in Departure Lounges – With the new departure lounge configuration, plentiful charging opportunities will be provided.

5.1.3 TSA Considerations

The local Transportation Security Administration (TSA) was one of the stakeholder groups surveyed and a number of operational considerations resulted. These elements will be considered for implementation when adjustments to the baggage and passenger screening areas are addressed.

Security Screening Checkpoint

1. Screening lanes 1 and 2 are too close together in the screening checkpoint making it difficult for Officers to move efficiently through the checkpoint.

2. Due to the location of the fire door, screening lane 1 is too short and the area at the end of the takeaway rollers is very congested.

3. Need more room to extend rollers and provide a bag check station without cross traffic from stakeholders using the side access door.

4. There should be another access point within the SSCP for stakeholders to use so they don’t have to walk behind the x-ray machine and through the middle of the operation.

5. The TSA supervisor platform is in the way in its current location and should be relocated.

6. Provide access to the exit corridor from the sterile boarding gate area away from the checkpoint and the access corridor next to the checkpoint should be eliminated.

7. Need a mail back system to return items that can’t go through SSCP.

8. Adjust configuration to allow for new CT machine - could go in lane 2.

Baseline-Level Baggage Screening

9. For increased efficiency, the checked baggage handling system should be upgraded to more modern standards to include the addition of secondary viewing stations of alarm bags and changes to the bag removal and insertion points to allow no-lifting transfers of baggage to and from inspection tables.

10. Secondary viewing, alarm image above search table, must be resolved at primary - image on screen must remain until the threat is eliminated.

11. Due to power turns, can’t have tables near line so requires lifting transfers which does not align with current PDGS (Planning Guidelines and Design Standards).

5.2 STAKEHOLDER MEETINGS AND UPDATES

Throughout the terminal planning process the design team and Airport Staff have met with and presented the status of the Terminal Area Concept Plan to interested groups including the City Council, Airport Committee and Federal Aviation Administration (FAA).
CHAPTER 6

DEVELOPMENT OF ALTERNATIVES
6.1 DESIGN CRITERIA

The initial considerations for the RDM terminal facility expansion included:

- Expand upper-level departure lounge space
- Provide boarding bridges to the available gate positions
- Scale design to allow the facility to grow to meet current and continuing travel demands
- Accommodate the anticipated increase in aircraft gauge, number of airline carriers, and quantity of flights
- Account for infrastructure limitations (available utilities)
- Modify aircraft parking apron to accommodate the proposed passenger boarding bridges and aircraft parking layout
- Relocate apron lighting, water mains, fire hydrants, electrical duct banks
- Adjust apron striping
- Evaluate airfield proximity considerations
 - Surface penetrations
 - Part 77 transitional surfaces
 - Inner transitional Object Free Zone (OFZ)
 - Terminal Instrument Procedures (TERPS) missed approach surface
 - Line of Site (LOS) requirements for the Air Traffic Control Tower (ATCT)

Beyond the scope of this study are limitations associated with the roadway and parking systems associated with the airport.

The standard resources that were used to establish the terminal building-related design criteria for this project include:

- FAA AC 150/5360-13, Planning and Design Guidelines for Airport Terminal Facilities
- ACRP - Passenger LOS and Spatial Planning for Airports
- ACRP – Airport Passenger Terminal Planning and Design Vol 1. Guidebook
- ACRP - Airport Passenger Terminal Planning and Design Col 2. Spreadsheets
- IATA – New LOS Concept (Summary)

Terminal functional area sizing (Figure 6-1) was performed using an RS&H developed methodology based on the standards listed above coupled with significant terminal design experience, and an understanding of the existing facility. In some cases, the functional areas are specific to the Redmond airport and the requirements of the facility staff. For example, there is not a standard calculation to determine the actual needs of the administration space as a function of enplanements or peak hour passengers. Rather, industry experience and coordination with the airport has resulted in estimating elements such as this for inclusion in the cost estimate. A breakdown of the primary processing elements follows:

Ticketing: Ticketing and check-in technologies are constantly changing, and the space provided should be adaptable to those evolutions. With the estimated 72% increase in traffic at the 2036 planning horizon, the length of the ticket counter will grow in a commensurate fashion thus accommodating a traditional ticket processing configuration. There is the opportunity, with the larger footprint, for airlines to potentially reconfigure their layouts to allow for new check in procedures, self-bag tagging, the installation of more self-service kiosks, etc.

Baggage Screening: Baggage screening technologies are also consistently improving and the systems currently in place at RDM could be modernized. For this area, it is important to preserve space for future expansion even though that space may not be needed immediately. As the screening occurs in the basement, it would be extremely difficult and costly to come back after the fact and try and retrofit a basement level expansion after the upper-level construction was completed. As such, the basement is recommended to be expanded to accommodate access of machines into and out of the space, as well as the ability to reconfigure to allow for the modernization as requested by local TSA as part of the survey. In addition, the added space could aid in the reconfiguration of the oversize conveyance so that it reduces the amount of manual baggage movements.

Baggage Make-Up: The baggage make-up component needs to be enlarged to allow all airlines access to make-up device frontage, increase the capacity of bags on the belts, reduce spillage of bags off of the conveyance. This expansion would essentially mirror the size of the bag screening expansion below and provide a similar throughput point for bags from below up to the carousels on the ground level.

Security Screening Checkpoint: With the future relocation of the rental car counters, this frees up and preserves space for a future expansion of the checkpoint as needed. In its current configuration, with some minor adjustments, the layout can continue to service the facility through the planning horizon. Due to its centralized location, it is recommended that it not be confirmed by elements that are difficult to relocate. As screening technologies advance, having the available room will make assimilating new technologies more seamless.

Baggage Claim: With substantially more traffic, the flat plate devices as currently installed are limiting in their ability to handle the additional load. Also, there is a security consideration for devices that go back and forth through the wall from airside to landside. To best accommodate growth, standalone carousels should be provided in a north-south orientation so that any continued expansion would allow more parallel devices to be installed with a minimum of building expansion. To deliver baggage to the new carousels, new drop off conveyance will need to be located on the exterior (albeit covered) for easy tug access. With two-sided drop off belts available for each carousel, four tugs can be loading bags concurrently, greatly improving efficiency. Conveyance would elevate up and over the tug roadway, enter into the building high and then drop into the center of the two devices. The bag claim expansion, the drop off area and associated coverage will impede on the rental car lot to the east.

Departure Lounges: The original intent of the project was to provide contact positions for the existing gates. Still, there will remain a long term need for continued ground boarding at Redmond as a number of smaller carriers will remain that will not upgauge aircraft to be available for boarding bridge use. The lower level holdroom space is currently proposed to remain mostly intact aside from modifications needed to convey passengers to and from the newly expanded upper level. With continued growth, and if a reduction is seen in ground loading requirements (and the need for associated departure lounge space) then the lower level holdroom could be repurposed into any number
The area sizes generated from the analysis (below) created the starting point for the layout and massing of the building. This table shows the functional area sizing for each of the planning horizons as well as for the modified 2036 (PAS 3 rev 2036) that reflects the anticipated growth based on the rapid recovery described in Section 3. Also shown in the orange column is the resultant concept design to be further described in Section 7.

Terminal Facilities Requirements

<table>
<thead>
<tr>
<th>FIGURE 6-1 Terminal Facility Requirements</th>
</tr>
</thead>
</table>

Terminal Facilities Requirements

<table>
<thead>
<tr>
<th>Existing</th>
<th>Baseline Forecast</th>
<th>CONCEPT 2036</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAL 1</td>
<td>2019</td>
<td>2026</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Commercial Traffic

- Annual Enplaned Passengers: 436,562 to 682,676
- Total Peak Hour Enplaned: 0 to 219
- Total Peak Hour Depicted: 0 to 219
- Total Combined Peak Hour Passengers: 0 to 460

TOTAL TERMINAL PROGRAM AREA (net)

<table>
<thead>
<tr>
<th>Existing</th>
<th>Baseline Forecast</th>
<th>CONCEPT 2036</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAL 1</td>
<td>2019</td>
<td>2026</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Airline Space

- Ticket Counter Length: 102 ft to 95 ft
- Ticket Counter Area: 1,078 ft² to 855 ft²
- Ticket Counter–Active Area: 1,138 ft² to 915 ft²
- East Area: 184 ft² to 276 ft²
- Ticket and Office and Administration: 4,769 ft² to 4,370 ft²

Total Airline Space (rounded):

<table>
<thead>
<tr>
<th>Existing</th>
<th>Baseline Forecast</th>
<th>CONCEPT 2036</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAL 1</td>
<td>2019</td>
<td>2026</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AIRPORT SPACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations: 7,152 ft² to 1,291 ft²</td>
</tr>
<tr>
<td>Bagging: 521 ft² to 601 ft²</td>
</tr>
<tr>
<td>Conference/Offer: 1,093 ft² to 927 ft²</td>
</tr>
<tr>
<td>Storage: 2,128 ft² to 2,388 ft²</td>
</tr>
<tr>
<td>Administration: 3,771 ft² to 2,014 ft²</td>
</tr>
<tr>
<td>Airport Offices: 6,645 ft² to 7,604 ft²</td>
</tr>
</tbody>
</table>

Total Airport Space (rounded):

<table>
<thead>
<tr>
<th>Existing</th>
<th>Baseline Forecast</th>
<th>CONCEPT 2036</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAL 1</td>
<td>2019</td>
<td>2026</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Baggage Service

- Baggage Claim Concourse Length: 260 ft to 114 ft
- Baggage Claim Concourse Area: 4,530 ft² to 602 ft²
- Baggage Claim Concourse Area: 2,652 ft² to 2,089 ft²
- Inbound Baggage: 7,040 ft² to 7,502 ft²
- Outbound Baggage: 8,112 ft² to 8,950 ft²

Total Baggage (rounded):

<table>
<thead>
<tr>
<th>Existing</th>
<th>Baseline Forecast</th>
<th>CONCEPT 2036</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAL 1</td>
<td>2019</td>
<td>2026</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Building Systems

- Mechanical/Plumbing: 10,596 ft² to 1,689 ft²
- Electrical/Elevator: 722 ft² to 738 ft²
- Support Space: 0 ft² to 1,180 ft²
- Total Building Systems Space: 12,581 ft² to 4,934 ft²

Transportation Security Administration (TSA)

- Queuing Space: 2,482 ft² to 1,200 ft²
- Inspection Area: 2,098 ft² to 1,698 ft²
- Security Screening Checkpoint: 5,724 ft² to 2,488 ft²
- Baggage Screening Facilities: 10,117 ft² to 2,808 ft²

TSA Administration Offices

- Support Space: 1,124 ft² to 400 ft²
- Total TSA Space (rounded): 17,518 ft² to 9,940 ft²

Public Space

- Public space includes elements such as pet relief areas, mother’s rooms, business center, etc.

Ground Transportation

- Rental Car Office and Counter: 1,046 ft² to 995 ft²
- Shuttle Office and Counter: 0 ft² to 956 ft²
- Bus/Transit Services: 631 ft² to 905 ft²

Total Ground Transportation (rounded):

<table>
<thead>
<tr>
<th>Existing</th>
<th>Baseline Forecast</th>
<th>CONCEPT 2036</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAL 1</td>
<td>2019</td>
<td>2026</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPARTURE LOUNGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger Departure Lounges: 12,218 ft² to 20,817 ft²</td>
</tr>
<tr>
<td>Departure Lounges: 9,623 ft² to 15,985 ft²</td>
</tr>
</tbody>
</table>

Total Departure Lounge (rounded):

<table>
<thead>
<tr>
<th>Existing</th>
<th>Baseline Forecast</th>
<th>CONCEPT 2036</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAL 1</td>
<td>2019</td>
<td>2026</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONCESSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food and Beverage: 4,260 ft² to 1,317 ft²</td>
</tr>
<tr>
<td>Other Retail: 1,077 ft² to 680 ft²</td>
</tr>
</tbody>
</table>

TOTAL CONCESSIONSSPACE (rounded):

<table>
<thead>
<tr>
<th>Existing</th>
<th>Baseline Forecast</th>
<th>CONCEPT 2036</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAL 1</td>
<td>2019</td>
<td>2026</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 6-1 Terminal Facility Requirements

Redmond Municipal Airport - Terminal Area Concept Plan
6.1.1 Airfield Proximity Considerations

The criteria used to develop the proposed airside layout for the expansion of the terminal building include:

- Airport Reference Code
- Aircraft Fleet Mix
- Aircraft Design Group
- Taxiway Design Group
- Pavement Design
- Pavement Markings
- Utilities
- Aircraft Fuel Spill Containment Systems
- Airfield Electrical and Lighting Systems
- Aircraft Support Vehicle Access

The standard manuals used to establish the airfield-related design criteria for this project include:

- FAA AC 150/5300
- FAA AC 150/5320
- FAA AC 150/5340
- Title 14 of the Code of Federal Regulations (CFR) Part 77, Objects Affecting Navigable Airspace
- NFPA Section 415, Standard on Airport Terminal Buildings, Fueling Ramp Drainage, and Loading Walkways
- Current Edition

The FAA guidance on the dimensional standards for an airport are based on three related design criteria. The airport reference code (ARC), Aircraft Design Group (ADG), and Taxiway Design Group (TDG). All three of these elements are based on the physical and operational characteristics of the critical aircraft using the airport.

The recent Master Plan update determined that the current airport reference code is C-III and is expected to continue to remain C-III for the foreseeable future. This indicates that the critical aircraft will have an approach category 'C' and a wingspan and tail height corresponding to ADG III aircraft. Airport Design elements are to be designed to ARC C-III standards where applicable.

The recent Master Plan also indicated that the current Taxiway Design Group for the airport is TDG 5, but expected to reduce to TDG 3 in the future. The Q400 is the aircraft that is currently the critical aircraft for the TDG 5 designation. In the future, it is expected that the Q400 will be phased out and replaced with a different aircraft, EMB175 with a TDG 3 designation. Considerations for the current TDG 5 and future TDG 3 designations should be considered when developing aircraft and layouts and pavement geometries.

6.1.1.1 Air Traffic Control Tower Line of Sight (LOS)

FAA Order 6480A, Airport Traffic Control Tower Sitting Process, provides guidance for the line of sight (LOS) analysis and requirements for controllers to see “critical points” on the airfield. The line of sight (LOS) for a controller requires an unobstructed view of all controlled movement areas of an airport, including all runways, taxiways and any other landing areas, and of air traffic in the vicinity of the airport. These surfaces are generally referred to as “critical points.”

Specific conditions at the airport, how an apron is used and who uses it, and local controllers and tower manager preferences may further define a “critical point”. For instance, a controller may need the ability to see push back operations for commercial service aircraft in order to help sequence departures and IFR (instrument flight rules) delays to arriving airports. Specifically, at RDM, when the ATCT was constructed, the Terminal was in a different configuration and farther back from the airfield. Between 2006 and 2011, the Terminal expanded towards the airfield and the existing building appears to be very close to obscuring the movement area boundary line (Figure 6-2). It is assumed that during the design of the first Terminal expansion project, there was an analysis and coordination with local ATCT to determine an acceptable line of sight, leading to the building massing that currently exists.

For this terminal expansion program, any enlargements to the facility will not increase the severity of seeing “critical points” on the airfield. Thus, the same level of service will be provided to ATCT.

To identify the limits of the building massing to stay within the parameters of the LOS requirements, the design team established the sightline origin point within the ATCT (Figure 6-3), and then documented the virtual plane that needs to be maintained to ensure the LOS. Corner points on the proposed building were then extrapolated vertically until they intersected the plane to establish the maximum building heights in those locations. That set the envelope for the massing (Figure 6-4).
6.1.1.2 TERPS Analysis

Penetrations into the Inner Transitional OFZ and TERPS missed approach surfaces would impact instrument approach procedures and could influence the location of the terminal boundaries. Thus an analysis was conducted to ensure that there were no obstructions.

A preliminary Terminal Instrument Procedures (TERPS) and obstacle free zone (OFZ) analysis was performed for both existing and future Runway 5-23. In summary, the aircraft tails of the most demanded aircraft the B737-900, are clear of existing and future TERPS and OFZ surfaces. Based on the initial concepts, there is no impact to existing and proposed flight procedures. The only penetration would be to the Part 77 Transitional Surface. The Part 77 imaginary surface, as defined in 14 CFR Part 77 Safe, Efficient Use, and Preservation of the Navigable Airspace, indicates that such penetrations to this surface can be permissible (Figure 6-5). An FAA form 7460 Notice of Proposed Construction or Alternation will need to be submitted to the FAA during the design process to verify approval of the penetrations.

The TERPS analysis (see Figure 6-6) included a review of the existing approach procedures for both Runway 5 and 23. It was determined that area navigation (RNAV) required navigation performance (RNP) approach and missed approach segments are the most restrictive for development. The approach and missed approach segments were identified and evaluated based on standard criteria in FAA Order 8260.58A United States Standard for Performance Based Navigation (PBN) Instrument Procedure Design. This type of approach also accounts for atmospheric and local meteorological conditions. The analysis assumed standard mean temperatures and atmospheric pressure. In addition, the existing RNAV (RNP) approach procedure has a height above threshold (HAT) value of 300 feet. A standard RNAV (RNP) approach has a 250-foot HAT. Typically, a higher HAT value means there is a controlling obstacle somewhere in the evaluation area that requires an increase in vertical separation between the aircraft and the runway end. The analysis assumed the Airport may have the capabilities to correct the approach by mitigating obstacle(s) to lower the HAT value. The missed approach segment overlaid the proposed development and had roughly a 30-foot clearance between the evaluation surface and the tail of the aircraft, in the worst case.
The future runway analysis assumed the worst-case scenario. The threshold for Runway 5 would remain in place; however, approach capabilities would be enhanced to an ILS CAT I, a precision approach procedure with a ½ sm visibility. In addition, the future runway analysis examined the OFZ surfaces. Applicable airspace surfaces were identified and evaluated as defined in FAA 8260.3E United States Standard for Terminal Instrument Procedures (TERPS). These surfaces are the three obstacle clearance surfaces (OCS) for a final segment of an ILS approach, “W”, “X” and “Y” as defined in Section 10-2, Final Approach Segment and the three OCS for a CAT I missed approach segment as defined in Section 10-3. Only the missed approach surfaces overlaid the proposed development. The OFZ transitional surface also overlaid the proposed development; however, the existing RNAV (RNP) missed approach procedure is the controlling surface and more restrictive than those identified in the future.

If Runway 5 were to be extended, as illustrated in the Airport Layout Plan, clearance values would increase.

6.1.2 Apron Considerations

The current airfield configuration accommodates parking positions for eleven (11) aircraft (Figure 6-7). Positions 1, 10 and 11 have been identified as those that can accommodate larger ADG III aircraft. All positions can handle the smaller regional jets as that is what the current facility was originally intended for.

To maximize the efficiency of the Terminal Area Concept Plan, the intent was to align the potential expansion with the current available apron area. A quick analysis found that in its current configuration the apron can accommodate ADG III aircraft in all 11 positions by aligning the aircraft safety envelopes (Figure 6-8). As a response to building configuration alternatives, options were considered to park aircraft at the east and west ends of the apron in a non-perpendicular fashion to address the possible locations of passenger boarding bridge (PBB) rotundas (Figure 6-9 and Figure 6-10). A PBB rotunda closer to the building would reduce passenger walking distances from departure lounge to aircraft.
The efficiency of the current apron condition is such that only a minor modification is necessary when the runway is extended as indicated in the Master Plan. With the extension, position 1 would need to be moved north so as not to impede on the new Runway Visibility Zone. Although the cost of the additional apron is not included as part of this analysis, the TACP has preserved the space north of position 1 for that eventuality without operational impediment (Figure 6-11).
6.2 INITIAL BUILDING LAYOUT CONCEPT

The original intent of the TACP was to accommodate new upper-level departure lounges to provide contact positions for the current aircraft positions. The basic premise was to design a facility that aligns with the current upper level, extends that to the east and west, provides for some additional concession opportunities and provides passenger boarding bridges at desired gates (Figure 6-12). Not all current carriers will be able to utilize the boarding bridges due to the aircraft they employ. As such, the lower-level departure lounge will remain intact for ground boarding conditions.

FIGURE 6-12 INITIAL UPPER-LEVEL CONCEPT DIAGRAM

Due to the rapid growth of Central Oregon and the continued anticipated increase in traffic through RDM, it quickly became apparent that only expanding the airside of the facility would not be prudent as it would lead to an unbalanced facility. To provide for a quality passenger experience requires the efficient processing and movement of both passengers and baggage while accommodating increased operations. This necessitates balance on both the airside and landside. The terminal functional area analysis, based on the anticipated peak hour passenger numbers and enplanements, reflected a need to either increase or preserve space to accommodate the needs of all major processors: ticketing, baggage screening, baggage make-up, passenger screening, departure lounges, baggage drop-off and baggage claim.

FIGURE 6-13 ADDITIONAL FACILITY NEEDS AND POTENTIAL IMPEDIMENTS

Assessment of the existing facility and coordination with stakeholders resulted in the identification of additional facility needs as well as potential impediments to their implementation (Figure 6-13). These include:

1. **Need More Ticketing and Airline Space** – in peak times the queue for the ticket lobby is very congested and creates conflicts with the northern circulation path. As growth continues there is no room within the existing ticket lobby perimeter to allow for an expanded queue, nor is there space to accommodate additional carriers.
2. **Mechanical/Electrical/Communications Hub Impedes Expansion** – the main boiler room, electrical room, mechanical room and communications hub are all located in a block immediately west of the ticketing lobby. As such, the ticketing lobby cannot be expanded in that direction unless that infrastructure is relocated. It was considered to expand ticketing to the east which would require the repositioning of the security screening checkpoint. In the short term that is a viable alternative but when the time comes to expand again, there would be not more room to move the checkpoint, thus the ticket area would become bookended with no place to go.
3. **Need More Baggage Make-Up Area** – increasing the ticketing area to allow for more passenger flow requires an equitable enlargement of the screening and make-up areas. Expanding this area to the west makes sense so that the tug routes can be maintained there is space available.
4. **Need More Administration Space** – the current configuration of airport administration space is fully occupied and its location within the terminal does not allow for any growth. Any additional staff that the airport hires would have to be located elsewhere.
5. **Need more Baggage Claim** – as the growth continues, baggage claim (like all the other processors) will need to expand. The layout of the terminal allows that to occur to the east relatively easily as there are not significant impediments. Transitioning from a flat plat “T” conveyor configuration to sloped plate carousels would require some additional space for drop off belts and tug thoroughfares.

In alignment with modifications to the components listed above is the focus on improving ADA accessibility, increasing energy efficiency, allowing for LEED certification, maximizing operational efficiency, and enhancing the passenger experience.

6.2.1 **Basic Massing Diagrams**

Basic massing diagrams were developed for each of the three terminal levels to illustrate the primary considerations in the planning process. These were intended to easily delineate between existing facility, the proposed expansions, and any required internal reconfiguration.

Basement Level

- Enlargement of the baggage screening to the west
- Additional conveyance input from ticket line
- Potential reconfiguration of the existing to remedy some of the TSA concerns (see Section 5.1.3)
- Ability to access basement level for equipment placement and removal
 - Necessary egress based on occupancy

Ground Level

- Remove the mechanical/electrical/communications hub from its current location west of the ticket lobby
- Enlarge the ticket area and ATO spaces to the west
- Enlarge the baggage make-up area to the west
- Enlarge and reconfigure the baggage claim area to the east
- Provide new bag drop area to the east
- Remove the administration space from the north side of the terminal (to be relocated to upper level)
- Relocate rental car counters and offices to the location of existing administration space
- Clear out existing rental car space for future expansion of security screening checkpoint
- Replace all existing revolving entry doors with new entry vestibules
- Replace the existing revolving breach control device with multi-gate walk through device(s)
- Modify the access to the upper level (escalators, stairs and elevators)
- Provide for GSE storage, airline storage, and covered parking under departure lounge expansions of the upper level
- Include loading dock area
- Reconfigure breach control systems for both lower and upper level

Figure 6-14 Basement Level Concept Massing Diagram

Figure 6-15 Ground Level Concept Massing Diagram
Upper Level (Figure 6-16)

- Provide new mechanical/electrical hub to be placed atop ticketing hall expansion
- Preserve roof level space for future mechanical/electrical equipment as needed
- Locate enlarged administration space to be located atop bag claim expansion
- Relocate police office to upper-level adjacent to administration space
- Provide new enlarged conference area adjacent to upper-level administration space
- Provide for landside accessible exterior airfield viewing area
- Departure lounge expansion over top of existing/new make-up areas to the west and pushing further west (approximately 6 gates)
- Departure lounge expansion over top of some lower-level departure lounge to the east, and further east (approximately 5 gates)
- Adequately size circulation, restrooms, concessions, mechanical/electrical spaces and storage
- Pet relief area
6.3 ARCHITECTURAL THEMING CONCEPTS

Through stakeholder engagement, the aesthetics and the feel of the existing airport are well thought of within the community. With the upper-level expansion, there was a desire to capture as much of the mountain views as possible to reinforce the beauty that Central Oregon has to offer. Allowing those views to be the first and last impressions of one’s visit to the region reinforce the unique sense of place.

The configuration of the building expansion is linear along the existing apron. As such, relative to aircraft parking the facility is one sided with predominant glazing facing the airfield to the south. With departure lounges logically placed along the southern face for direct access, the functions of concessions, circulation, and restrooms are more inboard and require careful consideration to ensure that natural daylighting is provided. Significant volumes and tall spaces are limited due to the sight lines from the air traffic control tower that need to be maintained. Still, within those parameters, a number of alternative roof forms and overall building massing were strategically considered to create a complementary expansion that reflects the existing facility while allowing it to evolve.

Three initial concepts were developed, each addressing the opportunity to pull light deep into the space in slightly different ways. In each concept the idea of creating exterior spaces (Figure 6-17 and Figure 6-18) that allow passengers to experience the outdoors one last time before climbing aboard their aircraft was an important factor. The ability to provide accessible and habitable outdoor spaces along the airfield frontage gives passengers a different perspective and a real-world connection to air travel.

![Figure 6-17 Exterior Deck Concept 1](image1)

![Figure 6-18 Exterior Deck Concept 2](image2)

Further studies informed the need for these spaces to be used year-round, such that they could be opened up in nice weather and protected from the elements in inclement conditions.
6.3.1 Flight

The Flight concept maintained the “V” shaped roof of the existing upper-level bar area and repeated it along the length of the expansion in the form of popped up roof areas to allow for natural lighting to pervade throughout. These elements create a rhythm along the façade and could align with concession components within the plan layout. A variety of roof forms were explored including a single sloped configuration as shown in Figure 6-20.

Inspiration: The design team looked for inspiration and imagery (Figure 6-19) that would inform Flight and the design process. Air travel and flight are concepts also reinforced by the wing shaped roofs that reflect journey and movement of aircraft and soaring birds of the region. The natural environment, vast landscapes, and majestic horizons are thoughtfully captured in view opportunities from the concourse expansion.

FIGURE 6-19 FLIGHT CONCEPT - INSPIRATIONAL IMAGERY

FIGURE 6-20 FLIGHT CONCEPT – EARLY ROOF OPTIONS
The flight theme is reinforced by the roof forms both from the exterior and the interior. Outside the replication of the original upper-level roof form (Figure 6-21 and Figure 6-22) pays homage to the original design and gives it prominence as the new elements are subservient in their size. Their placement along the circulation route provides opportunities for placemaking due solely to the architecture and the ability to filter in different types of light based on the 4-sided clerestory glazing at each popped up location (Figure 6-23). Departure lounges and concessions areas will be the beneficiaries of this added daylighting.
6.3.2 Lodge

The lodge aesthetic is exemplified in the existing facility through the use of heavy timber and stone. The proposed design continues the use of warm and natural materials to create an authentic architecture that is rooted in context and connected to its place. This thematic concept expands on that using a familiar gabled roof symbology (Figure 6-25) with exposed structure to create destinations at the east and west ends. At each end the exterior wall could be fully glazed extending up into the peak of the gabled roofs offering a maximized viewing position. On the west side, the mountain view truly becomes the destination.

Inspiration: The lodge ideal is ingrained in the outdoor way of life that is Central Oregon. Maintaining the natural feel inside the building is a continuation of the existing and speaks to what it is like to be in the mountains (Figure 6-24). Warm materials, such as a wood look on the gabled ceiling elements could be utilized to reflect the inspiration.
The roof forms considered for this concept are focused on the ends of each terminal expansion (Figure 6-26 and Figure 6-27). These two destination points could provide all of the “feeling” that resides in the main portion of the original terminal with warm wood tones and stone accents. The soft north facing clerestory lighting (Figure 6-28) will allow the interior spaces with a nice, filtered effect. The expanse of west facing glazing will both provide spectacular views and need to be treated to minimize glare and heat gain in summer months.
6.3.3 Airstream

The Airstream thematic concept combines the sleekness of a modern aesthetic with the excitement that comes from an active lifestyle focused on travel and exploration. These reference the foundation of central Oregon and its continued evolution as a destination. The concept offers a bridge between the rugged history and traditions of the region and the future vision of a modern facility connected to the world. The modern sense is exhibited through the continuous form of the building from east to west interrupted only by the existing two-story element. The sense of activity and delight comes from the interplay of the various light sources, surfaces, and roof forms guiding the way along the primary circulation. The passenger journey and experience throughout the terminal is carefully crafted to feature concessions, fireplaces, outdoor terraces, and offer outstanding view opportunities that reinforce contemporary placemaking.

Inspiration: The aesthetic (and name) of the airstream ideal is obviously pulled from the high-end travel trailer of the same name. The thoughtfulness that has gone into the design of a “home away from home” is a sensibility applied to the RDM terminal. In order to reflect both the small town feel and the adventuresome spirit, this concept may employ a mixture of both rooted “of the earth” materials and modern details. Maintaining the natural feel inside the building is a continuation of the existing and speaks to what it is like to be in the high country of Central Oregon (Figure 6-29).
The sleekness of this concept simplifies the massing of the concourse along its length (Figure 6-30 and Figure 6-31). The focus becomes the play of light on the interior from the north facing clerestory glazing (Figure 6-32). The continuity of the glazing, interrupted only by the original upper-level roof element emphasizes the circulation path. To the west that culminates in the view of the mountains, to the east of the airfield. Either way, as much of the interest lies in the journey as in the final parking place.
7.1 PREFERRED CONCEPT PLANS

The preferred concept, at full build out, accounts for all of the forecasted demand parameters as well as meeting the primary requests from the stakeholder engagement process. Those specific elements are again listed below:

Primary Processor / Component:
- ✓ Properly sized departure lounges
- ✓ Aircraft accessible by passenger boarding bridges
- ✓ Enlarged ticketing area, ATO and Ops space
- ✓ Enlarged baggage screening area
- ✓ Enlarged/improved baggage make-up area
- ✓ Enlarged baggage claim area
- ✓ Improved baggage drop off area

Stakeholder Requests:
- ✓ Mountain views
- ✓ More concession options
- ✓ Maintain small town feel
- ✓ More ticket area queuing, ATO, and Ops space (included as part of the primary processors)
- ✓ More Airport Administration Space / Another Large Conference Room
- ✓ Upper-Level Area for public airfield viewing
- ✓ More baggage make-up area
- ✓ More storage space near bag claim
- ✓ GSE winter storage
- ✓ Improve signage/monitors
- ✓ More electrical within airline spaces
- ✓ Improve oversize bag belt
- ✓ Improve electrical on ramp
- ✓ Improve CCTV coverage
- ✓ Stronger WiFi
- ✓ Water source in make-up area for cleaning Upgrade lighting to LED
- ✓ Plentiful plug-ins and USB in departure lounges
 - Improve lighting, temperature and sound absorption in checkpoint (to be part of a future checkpoint expansion)
 - Improved curbside (to be part of a future landside expansion)*

*Improvements to the curbside, roadway and parking components are beyond the scope of this study.

The architectural aesthetic that was carried forward for the rough order of magnitude cost estimate was the Flight concept. Following a presentation to the Airport Committee, where all three initial concepts were presented, Flight resonated with the members and is being used as the basis of design.
Following are the working plans for the preferred concept. The existing building perimeter is represented with the black dashed line for reference.

FIGURE 7-3 PREFERRED CONCEPT – BASEMENT LEVEL
FIGURE 7-4 PREFERRED CONCEPT – GROUND LEVEL
FIGURE 7.5 PREFERRED CONCEPT – UPPER LEVEL
Considerations for the interior of the facility were prepared to create a baseline for the pricing exercise. Flooring was estimated based on the finish plan below. The materials assumed were intended to complement the current facility’s aesthetic, maintain the smalltown feel, and be representative of Central Oregon.
7.2 PREFERRED CONCEPT ROUGH ORDER OF MAGNITUDE (ROM) PROGRAM COSTS

A Rough Order of Magnitude (ROM) cost estimate was performed based on how the project is assumed to likely be phased. A detailed description of each phase and the elements included, by discipline, is provided in the next section.

The concept level cost estimate is based on a number of assumptions, including:

- No hazardous material abatement required
- Design to result in the building conforming to the OSSC Chapter 4 requirements based on use and occupancy. “Covered Mall” provisions will apply
- Furniture, fixtures and equipment are not included, an assessment of the build out of concessions is provided for reference
- The state of Oregon normally requires 1.5% of construction cost to be applied to green energy (i.e. solar). Although terminal building is exempt, there is a roll over from the recently completed SRE building. That roll-over requires that $180K be included in the terminal expansion cost estimate to cover those costs that were not applied to the SRE building.
- Construction Manager at Risk is the assumed delivery method for this project. As such, there is fee included in the soft costs for the CMAR’s involvement during design.
- Design and construction contingencies included due to the preliminary nature of the concept design
- Construction costs include hard construction, general conditions, insurance, overhead and profit, performance bonds, and state of OR gross receipts tax.
- Range of construction costs includes an assessment of escalation and what the construction environment might be relative to inflation, lead times, material availability, labor shortages, etc. This ranges 3% per year to 7% per year.
- Soft costs are included with placeholders for design fee, art, City testing/inspections, and RDM Airport Staff
- Passenger boarding bridges are included
- Baggage system conveyance is included, except within the baggage screening area – it is assumed that will be provided by TSA when it becomes necessary
- Airline space/elements (ticketing, ATO space, Ops space, departure lounges, aircraft positions) are not defined by carrier
- Cost impacts due to demolition, work on an operating airfield, sequencing to accommodate continued operations, ensuring the safety and security of passengers and workers are all included

The full ROM cost estimate is included in the Appendix.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1</td>
<td>$99.6M</td>
<td>$109.8M</td>
<td>$75.1M</td>
<td>$82.6M</td>
<td>$8.2M</td>
<td>$16.3M</td>
<td>$19.1M</td>
</tr>
<tr>
<td>Phase 2</td>
<td>$13.7M</td>
<td>$15.5M</td>
<td>$10.4M</td>
<td>$11.9M</td>
<td>$1.1M</td>
<td>$2.2M</td>
<td>$2.6M</td>
</tr>
<tr>
<td>Phase 3</td>
<td>$25.7M</td>
<td>$29.9M</td>
<td>$23.7M</td>
<td>$25.2M</td>
<td>$2.0M</td>
<td>$4.0M</td>
<td>$4.7M</td>
</tr>
<tr>
<td>Phase 4</td>
<td>$30.9M</td>
<td>$36.7M</td>
<td>$23.8M</td>
<td>$28.9M</td>
<td>$2.4M</td>
<td>$4.7M</td>
<td>$5.5M</td>
</tr>
<tr>
<td>Phase 5</td>
<td>$8.8M</td>
<td>$10.7M</td>
<td>$6.8M</td>
<td>$8.5M</td>
<td>$0.7M</td>
<td>$1.3M</td>
<td>$1.5M</td>
</tr>
<tr>
<td>Program Total</td>
<td>$178.7M</td>
<td>$202.6M</td>
<td>$137.8M</td>
<td>$155.0M</td>
<td>$14.3M</td>
<td>$28.6M</td>
<td>$33.4M</td>
</tr>
</tbody>
</table>

FIGURE 7-7 TOTAL ESTIMATED PROGRAM COST

FIGURE 7-8 FULL BUILD-OUT OF RDM PROGRAM
The basic massing per phase is represented in Figure 7-9. Combined phase floor plan drawings are represented in Figure 7-10, Figure 7-11, and Figure 7-12. Individual phase descriptions are presented in section 7.3.
These phasing images represent the 5 primary phases and the primary elements included:

FIGURE 7-10 PREFERRED CONCEPT – BASEMENT LEVEL PHASING DIAGRAM

- **Phase 1**: Existing building perimeter
- **Phase 2**: Conveyor routing from new ticket area
- **Phase 3**: New TSA office area
- **Phase 4**: Expanded baggage screening
FIGURE 7-12 PREFERRED CONCEPT – UPPER LEVEL PHASING DIAGRAM

- Mech/Elec central plant replacement as part of Phase 1
- Many more airside concession options
- Service corridor and concession storage
- Departure lounges to accommodate ADG-III aircraft
- Interior ramp (each side)
- Expansion of roof top mech/elec central plant
- Airfield viewing area
- Expanded conference rooms
- Interior modifications of exist upper-level as part of Phase 1
- Right-sized restrooms, Phases 1 a& 4
- Comfortable circulation
- Interior buildout of upper-level Admin area as part of Phase 5
7.3 PREFERRED CONCEPT PHASING

Based on available funding, it is anticipated that the program will be phased. The following represents the five basic phases that were devised to allow the facility to evolve over time to meet the increasing demand.

On the following pages, each phase is described with:

- The approximate area of new construction and renovation on each level
- An assessment by discipline (architecture, structural, mechanical, plumbing/fire protection, electrical, information technology, and site-related) of the process and components that are impacted
- A massing diagram showing the relative growth
- Representative floor plans indicating phase-specific areas
- Processor/Component chart depicting how the primary processors of the terminal will related to the 2026 and 2036 planning horizons at the end of each construction phase
- ROM cost breakdown separating out
 - Range of construction costs
 - Estimated soft costs
 - Proposed contingencies
 - Concept level totals

At full buildout, the terminal will be able to accommodate the peak demand needs anticipated as well as have improved ADA accessibility, increased energy efficiency, the opportunity for LEED certification, maximized operational efficiency, and an enhanced passenger experience.
7.3.1 Phase 1 – West Departure Lounge Expansion / Utility Plant Replacement

Architecture

- **Basement Level**: Approximate 12,000 sf expansion of the baggage screening area, tied into the existing. Includes some TSA offices and a new bag belt drop from the ticketing area expansion.

- **Ground Level**: Approximate 17,700 sf expansion that includes an extension of the baggage make-up area, tied in similarly to the basement screening as the existing. Immediately west of grid line A, will be an internal ramp that reduces the elevation of the upper level to approximately 12’ above the apron to reduce cost and accommodate ADA compliant access to the aircraft via bridges and fixed walkways. A utility yard is provided to the west, connected to the facility with an access hall that separates airside from landside. At the western end of the yard is a loading dock, service elevator and trash enclosure all situated for easy access form the landside fence. Inside there are new escalators and stairs for improved access to the new upper-level boarding area. The lower-level departure lounge stays operational from continued ground loading needs. Breach control devices will be provided for the access from both upper and lower level airside spaces to the landside / baggage claim area.

- **Upper Level**: Approximate 51,000 sf addition to provide seven (7) contact gate positions with boarding bridges. Departure lounges are sized to accommodate ADG-III size aircraft. Multiple concessions, restrooms, storage and circulation are all part of this expansion. In addition, the upper level of the ticketing/ATO expansion is where the mechanical/electrical plant will be replaced (from its original location on the ground level west of ticketing).

Structural

To expand the baggage screening area, the basement will need to be enlarged. Approximately 14’ of excavation and construction of 16” thick reinforced concrete walls with spread foundations is anticipated. The new concrete wall will align with the existing southern wall and extend approximately 120’ west, turning North

Phase 1

<table>
<thead>
<tr>
<th>Location</th>
<th>Processor/Component</th>
<th>2021</th>
<th>2026</th>
<th>2036</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landside</td>
<td>Ticketing</td>
<td>2021</td>
<td>2026</td>
<td>2036</td>
</tr>
<tr>
<td></td>
<td>Bag Screening</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Passenger Screening (SSCP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baggage Claim</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concessions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restrooms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Administration Space</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airside</td>
<td>Upper Departure Lounge</td>
<td>2021</td>
<td>2026</td>
<td>2036</td>
</tr>
<tr>
<td></td>
<td>Contact Positions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concessions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restrooms</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration at end of Phase 1
for 75' and returning 120' back to the existing basement. Columns with spread foundations along column grid 9.2 will be installed at 30’ o.c to provide support for a new ground floor, ticketing level and roof. The ground floor is anticipated to be constructed similarly to the existing with wide flanged steel beams supporting a 2” metal deck with 5” of lightweight concrete above the flutes, waterproofing membrane, 4” of rigid insulation and a 5” normal weight topping slab.

At the existing baggage screening area on column grid 9.2 and 10.9, the existing foundations will need to be enlarged and existing columns will need to be reinforced so they can accommodate the additional load due to the new ticketing level floor in this area. The existing roof at the current bag screening area will be demolished to construct a floor structure and a new roof. New columns at grid 9.2 and 10.9 will be spliced with existing ones and extend to the roof level.

The ticketing level structure will be comprised of 3 ¼” lightweight concrete slab on 3” composite metal deck (overall thickness = 6 ¼”) supported by 24” deep wide flange beams spaced at 6'-0” o.c and 30” deep girders. The roof structure will be comprised 1 ½” 20 gauge, type “B” metal deck supported by 16” deep beams spaced at 5'-0” o.c., spanning to 30” deep girders. See Appendix.

Mechanical

The existing hot water heating and the chilled water-cooling plants were installed back in 2008 and are located on the main first level of the terminal adjacent to the electrical room. These plants will need to be replaced as part of expansion and located on the roof to accommodate the expansion of the ticketing area including the ticketing lobby to the west.

- **Chiller Plant**: Approximately 3,500 square feet space on the roof will be allocated for the new chiller plant and will consist of two 325-ton water cooled centrifugal chillers. The chilled water system will have a total capacity of 650 tons of cooling to accommodate the 400 tons of the existing terminal loads and 250 tons of the new expansion and additional loads. The plant piping system will consist of primary and secondary piping and pumps to provide chilled water around the terminal.

Two (2) primary pumps with 780 gpm each will be required for each evaporator and they will operate in duty and stand-by arrangement for a total of four (4) pumps. Chilled water will be circulated and provided to the terminal by two (2) secondary pumps with 1560 GPM.
The existing cooling towers will be replaced by two (2) new 400 tons fluid coolers or raised cooling towers to serve the chiller plant. These units will be located on the roof near the chiller plant and will occupy approximately 40’x40’ of roof space. Condenser water will be provided from the tower to the chiller plant by two (2) tower pumps with 1,950 gpm each in duty and standby operations.

Chilled water distribution will be insulated, Type L copper for piping 2-1/2 inches and smaller and insulated Schedule 40 steel for piping 3 inches and larger. Copper piping will be joined by soldering or with press-fit type fittings. Steel piping will be joined with mechanical couplings.

- **Boiler plant:** The boiler room will be located on the roof near the chiller room and will occupy about 1,500 SF. It will consist of 4 high efficiency condensing boilers with 2500 MBH input capacity each. The new boiler plant will have a total capacity of 240 BHP an equivalent of 8000 MBH total output. New hot water distribution pumps will be required to accommodate the building and the new expansion heating demands.

Primary and secondary piping arrangement and pumps schemes will be considered for the boiler plant. It will consist of 4 primary pumps with each pump to serve its associated boiler with 200 gpm flow. Two variable flow secondary pumps with 800 gpm each will provide hot water heating to the terminal and the new expansion and will be controlled by VFD in a duty and stand-by arrangement.

Heating water distribution will be insulated, Type L copper for piping 2-1/2 inches and smaller and insulated Schedule 40 steel for piping 3 inches and larger. Copper piping will be joined by soldering or with press-fit type fittings. Steel piping will be joined with mechanical couplings.

The existing boiler flues will be removed, and the new ones will be an AL-429C stainless steel for compatibility with the condensing boilers.

- **Air Handling and Distribution:** Expansion area will be served by 4 roof-mounted single zone variable volume (SZVAV) unitary with 25,000 cfm capacity each. The SZVAV RTUs will consist of chilled and hot water heating coils and will have 100% outside air economizer capability along with high efficiency filters, an electronic air treatment system such as Cosatron and heat recovery sections for energy savings.

Air distribution will consist of galvanized 2” w.g. pressure class sheet metal ducts with external insulation. Flexible duct runouts to diffusers less than 8 feet in length will be provided.

Air Handling Alternative: The Expansion areas will be served by 2 single zone Variable Air Volume (SZVAV) AHUs with 25000 cfm each and fitted with chilled water and hot heating water coils. The SZVAV AHUs will have 100% outside air economizer capability along with high efficiency filters, and heat recovery sections for energy savings. In addition to the pre and final filters, an electronic air treatment system such as Cosatron will be used.

The new AHUs will be located on the roof inside new mechanical room(s) or penthouse and will require louvers for outside air intake and exhaust. Supply and return air ducts will be extend down from the unit to the new expansion.

The new AHUs can also be located on the first level in new mechanical room(s) and will require the construction of mechanical shafts extending up to the roof of the new expansion for outside air intake.

Air distribution systems will consist of galvanized sheet metal ducts with external insulation. High velocity ducts upstream of the terminal units will be constructed to a 4” w.g. pressure class.
Kitchen grease exhaust air duct and make up air duct will be connected to tenant provided kitchen hoods. Exhaust air duct for dishwasher exhaust systems will be connected to tenant provided dish hoods or direct to dishwashing equipment as required. The final design and sizing of these systems shall be coordinated with the concessionaire as the design progresses.

Any IT or server rooms will have 100% cooling redundancy provided by direct-expansion split systems in addition to the cooling provided by the main HVAC system.

- **Controls:** General for all phases. The controls system components for new HVAC system and lighting equipment shall BACNET over IP certified controllers and shall integrate fully and completely with the existing Building Automation System. The new system components and equipment shall have full interface compatibility with the existing BAS system by graphically displaying all current active monitored and controlled input/output points in the same manner as the monitored and controlled input/output points for the existing system.

Plumbing and Fire Protection

- **Plumbing:** Specific for this phase: A new 1500-gallon grease interceptor will be provided to capture the grease waste discharge from the new kitchen concession space. This interceptor will be located in the airside apron adjacent to the terminal, but out of aircraft traffic lanes. This interceptor, along with the new sanitary mains from the new expansion and restrooms will discharge into the existing sanitary lift station. The sanitary lift station may need to be relocated out to west near the utility yard if it does interfere with the ticketing lobby expansion. Cold water service will be extended to baggage make-up area for maintenance and cleaning of this area.

 General for all phases: Plumbing systems for this phase will include domestic cold water, domestic hot water, domestic hot water recirculation, sanitary sewer, primary and secondary storm drain/sewer, and vent piping. Two (2) Gas hot water heaters will be added near the restroom bank to minimize hot water piping length.

 Plumbing fixtures are rated for low water flow. Water closets and Urinals are wall mounted, vitreous china, with exposed flush valves with sensor operation. Flush valves are hardwired for power, and not battery operated. Lavatories are undercounter mount, vitreous china with sensor operated 0.5 GPM faucets. The lavatory faucets are hardwired for power.

 Cold water, hot water and hot water recirculating piping shall be type “L” hard drawn copper tubing with wrought copper or cast bronze soldered type fittings. Joints in all copper water lines shall be soldered with lead free type solder.

 Storm drainage for the new expansion includes interior roof drains and emergency overflow drains with new interior storm piping. The new storm drain lines will be connected to the new storm main lines and routed to the existing storm lift station. Emergency overflow drains will discharge through downspout nozzles on the exterior walls just above the apron pavement. The existing roof drains adjacent to the new expansion that originally discharged onto the apron will be connected with new interior storm piping. The new storm drain lines will be connected to the new storm main.

 Storm drainage for the new expansion includes interior roof drains and emergency overflow drains with new interior storm piping. The new storm drain lines will be connected to the new storm main lines and routed to the existing storm lift station. Emergency overflow drains will discharge through downspout nozzles on the exterior walls just above the apron pavement. The existing roof drains adjacent to the new expansion that originally discharged onto the apron will be connected into the new storm drain piping system. New emergency overflow drains will be provided in these existing roof areas to replace the existing overflow scuppers for this area.

 Sanitary Drain, waste, Storm drain and vent piping shall be service weight hub-less cast-iron with neoprene gasket and stainless-steel bands. Cast iron pipe, fittings, and couplings shall conform to the cast iron soil pipe institute standard 301.

 The natural gas service at the airport will be extended from main service entrance by the existing boiler room to the new location and it will upgraded to accommodate the demands for the expansion and concessions.

- **Fire Protection:** General for all phases: Automatic sprinkler protection will be provided throughout all areas in accordance with National Fire Protection Association (NFPA) 13 and state and local requirements for office area. Recessed pendent sprinklers will be provided in ceiling tiles and centered in both directions. Concealed sprinklers will be provided in gypsum board ceilings in the public areas. Finishes will match existing finishes. Piping will be Schedule 40 steel pipe for use with threaded, welded and grooved fittings. Schedule 10 steel pipe will be permitted for rolled-groove and welded fittings.

Electrical

 The expansion will require the relocation of the existing building service. This will require brand new service switchboards that match the existing ratings on the second level. See the marked up single line diagram for reference. This phase will require a temporary roll-up generator to be used to stage the cutovers to limit airport downtime.

 The departures level expansion and installation of PBBs will require a significant electrical service. Given the long-term growth for the terminal, the existing electrical room should not be used to provide power to the expansion. A new electrical service from the utility shall be installed to serve the expansion. The estimated electrical service will be 3000A. The main distribution board will serve the secondary distribution points throughout the building. Distribution boards, transformers, lighting panels, and power panels will be required. Additionally, all of the PBBs will require outdoor rated service disconnect switches, 3 per PBB. These will serve the bridges, GPUs, and PC Airs. All new LED lighting will be centrally controlled with an addressable relay panel that ties into the BMS. A new fire alarm node shall be required to support all of the new devices.

 Emergency power will be provided by a new 2000kW generator. The generator will be installed in an outdoor, sound attenuated enclosure. The enclosure will need to be sized large enough to hold the generator with belly tank, along with all support panels, battery chargers, etc.

 All new LED lighting with additional relay panels to tie into the addressable system installed in this phase.

Information Technology

 A new MDF and a series of new IDF's (five (5) or six (6)) will be constructed to provide telecommunications service to the renovated and expanded airside terminal including the basement (expanded baggage screening
New IDFs built to support the expansion will be connected to the new MDF via home runs of OM3 50/125-micron multimode fiber and 25-pair copper cables. Note that the OM3 fiber will allow link speeds of 10 Gb at distances up to 400 meters. The new MDF will replace the existing MDF during a later phase of work following the cutover and relocation of the existing systems. The new MDF will be constructed and fully commissioned during this phase of work except for the connection to the outside plant cables. Connectivity will be provided via a multi-pair copper tie cable (sized as required) and OM3 fiber routed to the existing MDF. New conduits for connection to the outside cable plant will be installed during this phase. Cables from service providers (AT&T and WOW for fiber and coax broadband and new AT&T analog phone service) will be installed at the beginning of the next phase of work.

The design shall provide telecommunications infrastructure to support the renovated and expanded airside of the terminal. The new infrastructure will include premise distribution, conduit, cable tray, fiber optic, and copper cabling, work area outlets for voice/data, and Wi-Fi systems. The new MDF and IDF rooms shall have controlled access and be furnished with lockable equipment cabinets for Owner and Airline equipment, 3/4” flame retardant plywood backboards mounted to the walls, and a complete telecommunications grounding and bonding system will be provided.

Work area outlets will consist of faceplates and jacks connected to horizontal copper cables to support both voice and data connectivity to the new IDF rooms. Data outlets mounted above the suspending ceiling for Wi-Fi wireless access points shall be provided throughout the expanded terminal. Data outlets for gate counters, FIDS, GIDS, information displays, improved Wi-Fi coverage, advertising, and televisio systems shall be provided at all new locations in the terminal. The Airport’s existing security systems (access control and video surveillance) shall be expanded.

The design shall provide new access control and video surveillance hardware to monitor and control access to the Security Identification Display Area (SIDA), Aircraft Operations Area (AOA), and other secure areas throughout the Terminal. The security systems will be an expansion of the existing airport access control and video surveillance systems. For ease of maintenance, the system components specified will be the same manufacturer and model as the existing systems currently maintained by the Airport (RDM). These components include control panels, card readers, electronic locks, video surveillance cameras, and network recording. The security systems will be managed, monitored, and controlled by Airport Security.

A new public address system shall be designed and installed in the renovated and expanded airside terminal. This system shall be expanded into other areas of the Terminal during later phases of work. A tie-in between the new and existing paging systems shall be provided for terminal-wide announcements.

Site Impacts

- **Site Paving:** This phase will require modifications and expansion to existing asphalt paved areas to the north of the expansion to provide room for ground service equipment, access to the airfield, and access to the loading dock/ trash enclosure. Additional room may be needed for airline GSE storage and deicing materials. This addition room could come from a portion of the credit card lot.

 Modifications to utilities and grade transitions due to the construction will require repaving a large portion of the existing asphalt in the vicinity. • Concrete (8’-10”) paving will be needed to provide a connection from the existing concrete ramp to the building and to provide operating area for the passenger boarding bridge. • Existing concrete will need to be removed to facilitate relocation of a water line and general excavation requirements for installing foundations. • The area under the expansion hold room for gates 8-11 can be utilized for storage of ground service vehicles and other airline support equipment. This area could be asphalt or concrete.

- **Water:** This phase will require the relocation of the water main that is serving a hydrant adjacent to the apron and the watermain along the airside of the terminal. The existing water main along the airside of the terminal would also need to be relocated due to the passenger boarding bridge foundations and egress pods that protrude into the airside of the apron. New fire hydrants along the airside of the terminal will be required to move the space requirements on the airside of the terminal. • A new water service for domestic and fire protection will be required for this phase. Initially this new service will serve the building expansion in Phase 1. However, it will be sized to accommodate the entire terminal building since the Phase 2 expansion will have impacts on the existing services.

- **Sewer:** This phase will require the reconfiguration of portions of the existing sewer services from the existing building in the vicinity of the sewer and storm drain pit adjacent to the new proposed elevator shaft. New sewer service from the westerly expansion will also be required to facilitate the installation of a new grease interceptor for the sewage associated with the concession expansion in the section floor hold rooms. As an option in this phase, all the sewer services may be reconfigured to prepare for the phase 2 expansion.

- **Storm:** This phase will impact storm drain facilities that currently collect runoff from the roof and area drains between the existing concrete ramp and the vendor parking lot. Revisions to the grade in this area will require reconfiguration of the storm drain system. The storm drain in this area can be routed to the retention basin to the west of the aircraft parking apron. Roof drainage from the existing building and the proposed expansion can be disposed of either through dry wells or incorporated in the existing storm drain and retention pond system.

- **Site Lighting:** This phase will impact the eight 60’ overhead flood lights for the aircraft parking area. Some of the poles and fixtures (four) may be salvaged and reused as they were recently installed in 2018. The existing 30’ poles and lights (nine) for the GSE road and vendor lot will need to be relocated to accommodate the new traffic patterns in the areas. It is possible that portions of the area for the GSE could be lighted by building mounted wall packs, this would eliminate the need for some of the area lights and reduce potential obstructions in the area. New feeder circuits would be required for the apron lighting and any new GSE fixtures.

- **Site Electrical:** This phase will require a new electrical service to serve the phase 1 expansion. A new primary feeder will be required for this service from the existing sectionalizing enclosure on the north side of the terminal road. An area has been identified on the north side of the hold room expansion to accommodate the new utility transformer and meter. • The existing utility transformer and meter may be in conflict with areas of operation depending on the final layout of the pavement and parking north of the hold room expansion. An electrical service circuit from the new electrical meter may be required to the existing electrical room. • The existing feeder circuits for the parking lot lighting and
parking lot access gates are also in the vicinity of this construction. It is possible that relocation of these circuits could be deferred to phase 2, however, they could be incorporated into this phase of the construction if other site electrical is being installed the vicinity. • The expansion of the hold room to the west will impact site electrical circuits for the GPU pedestals and overhead lighting that are located in the expansion area. The GPU pedestals may not need to be replaced, as the PBB may have power connections for aircraft. Location for ground service equipment to charging may need to be provided to accommodate the airline equipment. • A location on the west end of the hold room expansion has been reserved as a potential area for new genset for the terminal expansion.

- **Site Communications**: The hold room expansion should not require relocation or installation of communication services. Currently, there is not a fiber optic service to the terminal building. The airport installed a spare conduit with the parking lot construction project to provide a pathway for a potential fiber optic service to the terminal. To date the fiber optic service has not been installed. • The expansion of ticketing area in phase 2 will require the relocation of communication lines for the access control to the new electrical and communications room on the second floor. Depending on the phasing of relocation of the main Telco room, the main telco service would need to be extended through the building to the new telco room or a new telco service provided.

- **Natural Gas**: The expansion of the hold room to the west does not have any direct impacts on the existing natural gas service. However, depending on the final building loads for natural gas, a new service for the expansion may need to be provided. If a new natural gas service is required, it will be sized to accommodate the full build out of the terminal since the existing natural gas service is impacted by the phase 2 construction. A location for the new natural gas meter has been identified on the north side of the hold room expansion.

- **Fencing and Security**: The expansion to the west will require relocation of the security fence to provide for operational area on the north side of the hold room expansion. The fence will need to be reconfigured to provide landside access to the trash/recycling area and the loading doc. A new security gate will be required to provide for emergency and airport access.
7.3.2 Phase 2 – Ticket Area/ATO Expansion and Build Out

Architectural

- **Basement Level**: Installation of the baggage screening system (not included in cost estimate) and conveyance for baggage into and out of the screening, from the ticket lobby and to the baggage make-up area.

- **Ground Level**: Approximate 6,500 sf expansion of the ticket lobby. Roof structure to be tied into that of Phase 1 to extend the usable upper level for mechanical and electrical plant expansion. Inside, the entirety of the new ticket lobby and ATO space (approximately 10,000 sf) will be built out to increase the entire usable ticket lobby.

- **Upper Level**: Build out of the additional 6,500 sf for use as preserved space for further mechanical/electrical equipment expansion.

Structural

New columns with spread foundations will be constructed along column grids 8.4, 9.2, 11 and 12 at 30’ o.c to provide support for a ticketing level and roof.

The ticketing level structure will be comprised of 3 ⅛" lightweight concrete slab on 3" composite metal deck (overall thickness = 6 ⅛") supported by 24" deep wide flange beams spaced at 6’-0” o.c and 30”deep girders. The roof structural system will be comprised 1 ½” 20 gauge, type "B" metal deck supported by 16” deep beams spaced at 5’-0” o.c spanning to 30” deep girders.

Mechanical

New ticket lobby and ATO spaces will be served by 1 roof-mounted single zone variable volume (SZVAV) units with 25,000 cfm capacity each. The SZVAV RTUs will consist of chilled and hot water heating coils and will have 100% outside air economizer capability along with high efficiency filters, an electronic air treatment system such as Cosatron, and heat recovery sections for energy savings.

Phase 2

<table>
<thead>
<tr>
<th>Location</th>
<th>Processor/Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landside</td>
<td>Ticketing</td>
</tr>
<tr>
<td></td>
<td>Bag Screening</td>
</tr>
<tr>
<td></td>
<td>Passenger Screening (SSCP)</td>
</tr>
<tr>
<td></td>
<td>Baggage Claim</td>
</tr>
<tr>
<td></td>
<td>Concessions</td>
</tr>
<tr>
<td></td>
<td>Restrooms</td>
</tr>
<tr>
<td></td>
<td>Administration Space</td>
</tr>
<tr>
<td>Airside</td>
<td>Upper Departure Lounge</td>
</tr>
<tr>
<td></td>
<td>Contact Positions</td>
</tr>
<tr>
<td></td>
<td>Concessions</td>
</tr>
<tr>
<td></td>
<td>Restrooms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Processor/Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021: 482,676</td>
<td></td>
</tr>
<tr>
<td>2026: 578,828</td>
<td></td>
</tr>
<tr>
<td>2036: 832,410</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase 2</th>
<th>ROM Cost (LOW)</th>
<th>ROM Cost (HIGH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Construction</td>
<td>$10.4M</td>
<td>$11.9M</td>
</tr>
<tr>
<td>Soft Costs (Design, City Mgmt., Art, etc.)</td>
<td>$1.1M</td>
<td>$1.1M</td>
</tr>
<tr>
<td>Contingencies</td>
<td>$2.2M</td>
<td>$2.6M</td>
</tr>
<tr>
<td>Overall</td>
<td>$13.7M</td>
<td>$15.5M</td>
</tr>
</tbody>
</table>
Air distribution will consist of galvanized 2” w.g. pressure class sheet metal ducts with external insulation. Flexible duct runouts to diffusers less than 8 feet in length will be provided.

Plumbing and Fire Protection
- **Plumbing:** Similar Phase 1.
- **Fire Protection:** Similar to Phase 1.

Electrical
- This phase will require new panel boards and LED lighting to support the expanded spaces.

Information Technology
Prior to demolition of the existing MDF, new outside plant cables from service providers shall be installed to the new MDF and circuits established. Existing IDFs will be connected to the new MDF via new home runs of OM3 50/125 micron multimode fiber and 25-pair copper cables. A phased cutover of existing systems to the new MDF shall move all active services and equipment from the existing MDF and the space cleared for demolition.

New data cables for the new and existing ticket counters and ATO shall be installed to the new MDF. The new paging system shall be expanded into the landside of the terminal building. Note that the existing paging system shall be relocated to the new MDF. The tie-in between the new and existing paging systems will also be maintained until the new system provides complete coverage throughout the terminal.

Site Impacts
- **Site Paving:** There will be minimal impacts to the site paving during this phase. Impacts would primarily be limited restoration of trenches and repair due to excavation activities.
- **Water:** The main domestic and fire water service to the existing terminal building will be impacted by the expansion in Phase 2. This expansion will require removal of the meter and backflow prevention vault and fire department connection. As mentioned previously the new service entrance installed in phase 1 will be utilized moving forward for the entire terminal.
- **Sewer:** The expansion of the phase 2 area for the airline ticket counter and ATO space will require the relocation of existing sewer services that currently pass through the proposed expansion.
- **Storm:** Removal of existing storm drain that serves the existing paved area will be required and the roof drainage will need to be re-routed for disposal.
- **Site Lighting**: The expansion of phase 2 will require removal of an existing 30’ light pole. The main feeder circuits for all the site lighting on the west side of the building will be impacted. A new feeder with the associated lighting circuits will be required for this expansion, unless it has been relocated in phase 1.

- **Site Electrical**: The phase 2 expansion will require any remaining electrical equipment in the existing electrical room to the new electrical room on the second floor. The existing electrical gear will be relocated to the second floor of the proposed expansion. The second-floor electrical room will be served from the new transformer and service installed in phase 1, and the existing electrical service abandoned. Depending on the scope of the relocations of site electrical in phase 1, rerouting of circuits to the parking lot will be required to tie in the circuits to the new second floor electrical room.

- **Site Communications**: Site communication lines for access control and security cameras may need to be relocated during this phase if the existing Telco room is still operational after phase 1. During phase 2 the existing telco room will be relocated to the second floor. All access control and security camera circuits would need to be rerouted to the second floor.

- **Natural Gas**: The existing natural gas service will be impacted by the phase 2 construction. Depending on the scope of the natural gas service work in phase 1, the existing natural gas service would need to be relocated during this phase or tied into the new service (if provided) in phase 1.

- **Fencing and Security**: No Impacts
7.3.3 Phase 3 – Baggage Claim Expansion and Reconfiguration

Architectural
- **Ground Level:** Approximate 7,700 sf expansion of the baggage claim. Exterior, there will be an approximate 9,900 sf covered baggage drop off area and associated roadway. This area will encroach on the rental car lot to the east. Interior, the combined existing and new baggage claim area will be reconfigured to accommodate two standalone baggage carousels fed from overhead conveyance from the new drop off area. Additional elements include a new oversize bag location, new abandoned bag / bag service office area, stair and elevator access to the future upper level administration space, and additional landside restrooms.
- **Upper Level:** Atop the expanded area of the main floor, the shell space for the future administration space, police office, conference rooms and outdoor viewing areas will be constructed. This area will be fit out in Phase 5.

Structural
For the baggage claim expansion, new wide flange steel columns with spread foundations will be constructed on approximately 30’ grid spacing. The ticketing level structure will be comprised of 3 ¼” lightweight concrete slab on 3” composite metal deck (overall thickness = 6 ¼”) supported by 21” deep wide flange beams spaced at 10’-0” o.c. and 30’ deep girders. The roof structure will be comprised 1 ½” 20 gauge, type “B” metal deck supported by 16” deep beams spaced at 5’-0” o.c. spanning to 30’ deep girders.

Mechanical
The HVAC needs for the administration area will be primarily served by one multi-zone variable air volume (MZVAV) roof-mounted unit with 15,000 cfm and it will consist of chilled and hot water heating coils along with 100% outside air economizer capability, high efficiency filters, an electronic air treatment system such as Cosatron and heat recovery sections for energy savings. The unit will serve the Admin area and operate as conventional VAV units with multiple single duct VAV terminal units and Fan powered VAV terminal units in the duct distribution.

<table>
<thead>
<tr>
<th>Phase 3</th>
<th>ROM Cost (LOW)</th>
<th>ROM Cost (HIGH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Construction</td>
<td>$19.7M</td>
<td>$23.2M</td>
</tr>
<tr>
<td>Soft Costs (Design, City Mgmt., Art, etc.)</td>
<td>$2.0M</td>
<td>$2.0M</td>
</tr>
<tr>
<td>Contingencies</td>
<td>$4.0M</td>
<td>$4.7M</td>
</tr>
<tr>
<td>Overall</td>
<td>$25.7M</td>
<td>$29.9M</td>
</tr>
</tbody>
</table>
Air distribution systems will consist of galvanized sheet metal ducts with external insulation. High velocity ducts upstream of the terminal units will be constructed to a 4” w.g. pressure class. Terminal units will consist of fan-powered boxes with hydronic reheat coils. Ductwork downstream of terminal units will consist of galvanized sheet metal ducts construction a 2” w.g. pressure class with external insulation. Flexible duct runouts to diffusers less than 8 feet in length will be provided.

Air Handling Alternative: The new MZVAV AHU for the administration area will be located on the roof inside new mechanical room or penthouse and will require louvers for outside air intake and exhaust. Supply and return air ducts will be extend down from the unit to the new expansion. The new AHUs can also be located on the first level in new mechanical room(s) and will require the construction of mechanical shafts extending up to the roof of the new expansion for outside air intake.

Air distribution will consist of sheet metal ductwork and variable-air-volume (VAV) terminal units/fan-powered-box terminal units with hot water reheat as required. The roof top units will feature Cosatron air purification and will include self-contained Energy Recovery wheels as required by the Energy Code.

Plumbing and Fire Protection
- **Plumbing:** Similar Phase 1.
- **Fire Protection:** Similar to Phase 1.

Electrical
This phase will require new panel boards and LED lighting to support the expanded spaces.

Information Technology
A new IDF for the new Admin Offices on the 2nd level shall be built and connected to the MDF via fiber optic and copper cables. New data cables for the Admin Office area shall be installed to the new IDF. New data cables for the renovated baggage claim area shall be installed to IDFs as required. The new paging system shall be expanded into the baggage claim area.

Site Impacts
- **Site Paving:** Additional site paving would be required to provide for the required maneuvering space for the baggage carts. This will require additional space to taken from the rental car lot and converted to airside pavement.
• **Water:** A short portion of the existing water main would be impacted by this phase. A small relocation of the water main is required in this phase, however, the required relocation for phase 4 could also occur during this phase.

• **Storm:** The expansion of the inbound baggage area will require minor modifications to the storm drain to accommodate the change in grades. The storm drain will be connected to the existing parking lot drainage.

• **Site Lighting:** The inbound baggage expansion will require the removal of four 30’ light poles to accommodate the expansion of the inbound baggage area and reinstallation of four lights for the GSE roads to the inbound baggage area. New feeder circuits would also be required for the relocation of the lights.

• **Site Electrical:** The expansion of the inbound baggage area has very little impact on site electrical. There are circuits for some outdoor receptacles that would be removed and need to be replaced. Additional circuits may be required for any charging stations that may be required for GSE.

• **Site Communications:** This phase will not result in any known impacts on site communications. The airport may want to install security cameras in the vicinity that may require communication cabling.

• **Natural Gas:** No impact.

• **Fencing and Security:** Relocation of the security fence would be required, and the option to add a vehicle access gate may be desired.
7.3.4 Phase 4 – East Departure Lounge Expansion

Architectural

- **Ground Level:** Two new stair/elevator core elements (approximately 400 sf each) will be provided. Area under the upper level will be paved for storage of GSE vehicles and tug movements.

- **Upper Level:** Approximate 25,800 sf expansion to the east to include concessions space, circulation, restrooms and departure lounge space for four (4) ADG-III aircraft. This will tie in directly to the work from Phase 1. Immediately east of grid line L will be an internal ramp that reduces the elevation of the upper level to approximately 12’ above the apron to reduce cost and accommodate ADA compliant access to the aircraft via bridges and fixed walkways.

Structural

At the existing east departure lounge the existing foundations at grid 12 will need to be enlarged and existing columns will need to be reinforced so they can accommodate the additional load due to the new ticketing level floor in this area. The existing roof will be demolished to construct a floor structure and a new roof. New columns and foundations at grids 8.4, 9.2, 11 and 12 at 30’ o.c to provide support for a ticketing level and roof.

The ticketing level structure will be comprised of 3 ¼” lightweight concrete slab on 3” composite metal deck (overall thickness = 6 ¼”) supported by 24” deep wide flange beams spaced at 6’-0” o.c and 30’ deep girders. The roof structure will be comprised 1 ½” 20 gauge, type “B” metal deck supported by 16” deep beams spaced at 5’-0” o.c. spanning to 30’ deep girders See Appendix.

Mechanical

Expansion area will be served by 1 roof-mounted single zone variable volume (SZVAV) unit with 25,000 cfm capacity each. The SZVAV RTU will consist of chilled and hot water heating coils and will have 100% outside airflow.

Phase 4

<table>
<thead>
<tr>
<th>Location</th>
<th>Processor/Component</th>
<th>2021</th>
<th>2026</th>
<th>2036</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landside</td>
<td>Ticketing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bag Screening</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Passenger Screening (SSCP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baggage Claim</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concessions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restrooms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airside</td>
<td>Upper Departure Lounge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contact Positions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concessions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restrooms</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration at end of Phase 4

<table>
<thead>
<tr>
<th>Phase 4</th>
<th>ROM Cost (LOW)</th>
<th>ROM Cost (HIGH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Construction</td>
<td>$23.8M</td>
<td>$28.9M</td>
</tr>
<tr>
<td>Soft Costs (Design, City Mgmt., Art, etc.)</td>
<td>$2.4M</td>
<td>$2.4M</td>
</tr>
<tr>
<td>Contingencies</td>
<td>$4.7M</td>
<td>$5.5M</td>
</tr>
<tr>
<td>Overall</td>
<td>$30.9M</td>
<td>$36.7M</td>
</tr>
</tbody>
</table>
Air economizer capability along with high efficiency filters, an electronic air treatment system such as Cosatron, and heat recovery sections for energy savings.

Air Handling Alternative: The Expansion areas will be served by 1 single zone Variable Air Volume (SZVAV) AHU with 25000 cfm each and fitted with chilled water and hot heating water coils. The SZVAV AHU will have 100% outside air economizer capability along with high efficiency filters, and heat recovery sections for energy savings. In addition to the pre and final filters, an electronic air treatment system such as Cosatron will be used.

The new AHU will be located on the roof inside new mechanical room or penthouse and will require louvers for outside air intake and exhaust. Supply and return air ducts will be extend down from the unit to the new expansion. The new AHU can also be located on the first level in new mechanical room and will require the construction of mechanical shafts extending up to the roof of the new expansion for outside air intake.

Air distribution systems will consist of galvanized sheet metal ducts with external insulation. High velocity ducts upstream of the terminal units will be constructed to a 4” w.g. pressure class.

Kitchen grease exhaust air duct and make up air duct will be connected to tenant provided kitchen hoods. Exhaust air duct for dishwasher exhaust systems will be connected to tenant provided dish hoods or direct to dishwashing equipment as required. The final design and sizing of these systems shall be coordinated with the concessionaire as the design progresses.

Plumbing and Fire Protection
- **Plumbing:** Similar Phase 1.
- **Fire Protection:** Similar to Phase 1.

Electrical
This phase will require new panel boards and LED lighting to support the expanded spaces.

Information Technology
New horizontal cables will be installed to the IDF's to support telecommunications equipment as required. The new paging system shall be expanded into the renovated area.
Site Impacts

- **Site Paving**: The proposed hold room expansion to the east will require modifications and expansion to existing asphalt paved areas to the north of the expansion to provide room for ground service equipment, access to the airfield. • Concrete paving will be needed to provide a connection from the existing concrete ramp to the building due to excavation operations. • The area under the expansion hold room for gates 1-3 can be utilized for storage of ground service vehicles and other airline support equipment. This area could be asphalt or concrete.

- **Water**: The expansion of the hold room to the east will require the relocation of the water main that is serving a hydrant adjacent to the apron.

- **Sewer**: No impacts.

- **Storm**: The expansion of the hold room to the east will require removal of storm drain and drywells associated with the existing buildings. A new drywell system or connection to the parking lot storm drain will be required.

- **Site Lighting**: This phase of the expansion will impact the five 60’ overhead flood lights for the aircraft parking area. The existing 30’ poles and lights (2) for the GSE road will need to be relocated to accommodate the new traffic patterns in the areas. It is possible that portions of the area for the GSE could be lighted by building mounted wall packs, this would eliminate the need for some of the area lights and reduce potential obstructions in the area. New feeder circuits would be required for the apron lighting and any new GSE fixtures.

- **Site Electrical**: The expansion of the hold room to the east will impact site electrical circuits for the GPU pedestals that are located in the expansion area. The GPU pedestals may not need to be replaced, as the PBB may have power connections for aircraft. A location for ground service equipment to charge may need to be identified.

- **Site Communications**: No impacts.

- **Natural Gas**: No impacts.

- **Fencing and Security**: The expansion to the east will require the relocation of a portion of the security fence to allow for additional room for ground service equipment.
7.3.5 Phase 5 – Interior Reconfiguration / Administration Build Out

Architectural

- **Ground Level**: New entry vestibules at each of the three current entry locations. Removal of the revolving doors and installation of vestibules: two at 600 sf each; the central one at 400 sf. Two sets of sliding doors to be provided for each vestibule. Car rental offices and counters could be moved to the existing administration area as desired. If the demand for rental car space exceeds that available from the relocation of administration, then some could remain in current location. As applicable, the area east of the security screening checkpoint can be repurposed into baggage claim lobby space until such time that the area is needed for checkpoint expansion. In total, this accounts for approximately 14,000 sf of impacted area.

- **Upper Level**: Approximately 8,100 sf of shell space built out into admin office, conference areas, police office and a possible landside aircraft viewing area. This significantly increases the available area for the expansion of administration staff and provided a second large conference area as desired. This area will tie into the airside via a small corridor for direct access to the new upper level departure lounge space.

Structural

No significant structural impacts for these predominantly interior fit out elements.

Mechanical

Modifications of ductwork and controls to accommodate the reconfiguration of interior spaces.

Plumbing and Fire Protection

- **Plumbing**: Similar Phase 1.
- **Fire Protection**: Similar to Phase 1.

Electrical

This phase will require new panel boards and LED lighting to support the expanded spaces.

<table>
<thead>
<tr>
<th>Phase 5</th>
<th>ROM Cost (LOW)</th>
<th>ROM Cost (HIGH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Construction</td>
<td>$6.8M</td>
<td>$8.5M</td>
</tr>
<tr>
<td>Soft Costs [Design, City Mgmt., Art, etc.]</td>
<td>$0.7M</td>
<td>$0.7M</td>
</tr>
<tr>
<td>Contingencies</td>
<td>$1.3M</td>
<td>$1.5M</td>
</tr>
<tr>
<td>Overall</td>
<td>$8.84M</td>
<td>$10.7M</td>
</tr>
</tbody>
</table>
Information Technology
New data cables for the relocated rental car counters shall be installed to IDFs as required. The new paging system shall be expanded into the renovated area. The paging system shall also be expanded into any remaining areas of the terminal prior to demolition of the existing headend equipment.

Site Impacts
No site impacts as all work associated with this phase is interior to the building.
CHAPTER 8

BEYOND PLAN
The expansion of the facility as described in this Terminal Area Concept Plan report allows the building to meet the spatial requirements necessary for contact gates for the currently available aircraft parking positions along the existing apron (Figure 8-1). These improvements will take the airport well past the 2036 planning horizon. There is significant flexibility in the design:

- All gate positions can accommodate ADG III aircraft – carriers could upgauge aircraft without concern for having available parking positions
- Airport could employ common use ticketing and gate systems to improve efficiency and utilization
- Flight schedules could be expanded to infill times of less activity

Beyond the scope of this study, space has been preserved to accommodate continued growth. From an airfield perspective, existing and/or additional carriers may require more Remain Overnight (RON) aircraft parking positions. Additional apron could be provided further to the west to accommodate such a request. With the current runway configuration, the shape of the additional RON apron would be trapezoidal due to the edge of the existing departure surface (Figure 8-2).

When the time comes that the runway is extended and there is the need for the terminal to grow to meet even a further out demand horizon, both the building and the apron have been conceptualized to allow for sequential and scalable expansion (Figure 8-3). Again, the flexibility of the design allows for:

- Expansion of primary processing elements (ticketing, bag claim, screening, and aircraft boarding) as space has been preserved both internally and externally
- A more rectilinear RON parking configuration due to the new runway departure surface requirements
9.1 STAKEHOLDER INPUT – SURVEY INFORMATION

Following is a sampling of the questions from the survey prepared for the various stakeholder groups:

STAKEHOLDER INPUT – SURVEY INFORMATION

RCM Airport Terminal Area Concept Plan Survey

The Redmond Municipal Airport (RMC) is in the process of preparing a Terminal Area Concept Plan, which is the first step towards taking some modifications to the terminal building to account for increasing passenger traffic. As the concept plan development is in its infancy, we are reaching out and collecting input from stakeholders, local residents, airlines, tenants, community members, and other interested parties to help identify potential opportunities, issues, and potential improvements. Please take a few minutes to voice your input and help us shape the future direction of the RCM Airport.

In the next weeks, we may include some minor reconfigurations as well as the development of a new harbor on the 2nd floor. We hope you and your family will enjoy the amenities offered through this survey to help inform the proposed modifications and expansions that result from this study.

Please complete your survey by Friday, April 15, 2022.

Thank you for your input.

RCM Airport Terminal Area Concept Plan Survey

Name (First Last):

Title:

1. What is your role at the airport?
 -1. Airline
 -2. Grounds
 -3. Concessions
 -4. Airport Staff/Operations
 -5. Other

2. Please select an airport:
 -1. Airline
 -2. Grounds
 -3. Concessions
 -4. Airport Staff/Operations
 -5. Other

3. What is your role at the airport?
 -1. Airline
 -2. Grounds
 -3. Concessions
 -4. Airport Staff/Operations
 -5. Other

4. Please ensure the following regarding ticket counters:
 - Yes
 - No

Do the ticket counters provide the necessary space to conduct business?
 - Yes
 - No

5. Is the space within the ticket counter staff adequate to accommodate necessary assistance (women, children, seniors, etc.)?
 - Yes
 - No

6. What modifications, if any, would improve efficiency?

7. How much do you disagree with the following statement?
 - Definitely would
 - Probably would
 - Probably would not
 - Definitely would not

8. If there is a question, does adding one still make sense to the passenger?
 - Yes
 - No

9. Please explain:
9.2 INTERIM PLANNING CONCEPTS

Following are interim planning concepts that were considered and refined.
9.3 INTERIM PHASING DIAGRAMS

This initial iteration of phasing assumed that the movement of the mechanical and electrical plant would happen as part of the second phase in order to keep the initial costs lower. These images represent that initial approach.

Separate into 4 sections for pricing:

1. Departure lounge expansion
 1. Bag screening
 2. Bag make-up

2. Ticketing expansion
 1. ATO space
 2. Move MEP to roof
 3. Ticketing area expansion

3. Baggage claim expansion
 1. Admin on upper level

4. Internal reconfiguration
 1. Rental Car relocation to current admin
 2. Free up space for SSCP enlargement or more bag claim elbow room

Following the presentation of this approach the Airport directed the design team to include the relocation of the mechanical/electrical plant in the first phase to ensure that it gets executed early in the program so as to not limit future expansion opportunities. From this the final 5-phase approach was developed.
9.4 SITE CONSIDERATIONS AT FULL BUILD OUT

FIGURE 9-9-1 SITE LAYOUT, PAVING AND ACCESS
FIGURE 9-2 SITE WATER
FIGURE 9-3 SITE STORM SYSTEM
FIGURE 9-5-6 WEST SIDE EXPANSION UTILITY CONSIDERATIONS

- Drainage may be impacted due to expansion.
- All utilities should be relocated to new areas.
- All utilities should be relocated to new areas.
- All utilities should be relocated to new areas.
- All utilities should be relocated to new areas.
- All utilities should be relocated to new areas.
- All utilities should be relocated to new areas.
- All utilities should be relocated to new areas.
- All utilities should be relocated to new areas.
- All utilities should be relocated to new areas.
9.5 PASSENGER BOARDING BRIDGE ANALYSIS

All Fleet 1
w/o Q400
9.6 STRUCTURAL DESIGN PARAMETERS

Code Information:
2019 Oregon Structural Specialty Code
- ASCE 7-16 - Minimum Design Loads for Buildings and Other Structures
- ACI 318-14 - Building Code Requirements for Structural Concrete
- AISC 360-16 - Specification for Structural Steel Buildings

Structural Design Criteria
- Building Risk Category: III
- Live Loads
 - Roof: 20 psf
 - Public Areas: 100 psf
 - Corridors and Stairs: 100 psf
 - Mechanical Equip. Areas: 150 psf
- Snow Load: 25 psf
- Wind Load: Ultimate Design Wind Speed 115 mph
- Exposure Category: C
- Seismic Load (Preliminary, to be verified with geotechnical report)
 - Mapped Acceleration Parameters
 - S_s: 0.39 g
 - S_1: 0.16 g
 - Design Spectral Acceleration Parameters
 - S_{DS}: 0.26 g
 - S_{D1}: 0.11 g
 - Site Class: B
 - Seismic Importance Factor: 1.25
 - Seismic Design Category: B
 - Seismic Force Resisting System:
 - Steel Systems not Specifically Detailed for Seismic Resistance
 - Seismic Response Coefficient: 2

Typical Bay Size: 30′x30′

Roof Construction
The roof structural system will be comprised 1 ½" 20 gauge, type “B” metal deck supported by W16 beams spaced at 5'-0" o.c. spanning to W30 girders.

Second Floor Construction
The second floor structural system will be comprised of 3 ¼" lightweight concrete slab on 3" composite metal deck (overall thickness = 6 ¼") supported by W21 beams spaced at 6'-0" o.c. and W30 girders.

Columns & Foundations
The columns to support the new floor and roof framing are assumed to be W12x106 to match the existing construction. Foundations will be concrete spread footings approximately sized at 14'-0"x14'-0"x2'-6".

Lateral Force Resisting System
The lateral force resisting system for the addition will be comprised of Steel moment frames.

Existing Structure Reinforcement
At locations where existing columns are intended to support a new floor and new roof, reinforcement of the columns may be required. Reinforcement of existing columns should be assumed to be new steel plates welded to the existing column to increase load capacity.

Foundations at these columns will likely need to be expanded. Typical construction consists of increasing the bearing area by doweling reinforcement into the existing footing and enlarging the foundation with new concrete.
In the existing baggage screening area some of the footings would need to be enlarged to accommodate the new loading. Those footings indicated above.

Footings to be enlarged as illustrated above.

Where constructing new building up against existing it is estimated that a slide bearing connection (similar to that illustrated above) that allows movement to accommodate the necessary expansion joint(s) will be used.

Column strengthening when utilizing existing members would require (2) 1/2" x 12" plates welded to existing columns extending from the foundation to the 2nd floor.
Redmond Municipal Airport Terminal Area Concept Plan

Statement of Probable Cost

PHASE SUMMARY

<table>
<thead>
<tr>
<th>PHASE</th>
<th>DEPARTURE LOUNGE EXPANSION (WEST) (2023)</th>
<th>Ticketing Expansion/MEP (2024)</th>
<th>BAGGAGE CLAIM EXPANSION (2025)</th>
<th>DEPARTURE LOUNGE EXPANSION (EAST) (2026)</th>
<th>INTERNAL RECONFIGURATION (2027)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markups (Low & High)</td>
<td>30,182,762</td>
<td>4,196,766</td>
<td>7,943,781</td>
<td>10,882,201</td>
<td>5,812,625</td>
</tr>
<tr>
<td>RANGE TOTALS</td>
<td>87,228,782</td>
<td>11,252,175</td>
<td>12,881,647</td>
<td>20,889,419</td>
<td>8,510,285</td>
</tr>
</tbody>
</table>

CONSTRUCTION RANGE TOTAL:

- Low: 154,219,207
- High: 176,770,586

NOTES

Wage rates: BOLI

- **GENERAL EXCLUSIONS**
 - Design fees, permit fees, system development fees, utility hookup changes, testing, BOLI fee.
 - Hazardous materials abatement, moving expenses, anti-graffiti coating, waterproofing.
 - Overexcavation, rock excavation, wet weather work.
 - Commissioning, FFE.
REDMONT MUNICIPAL AIRPORT
TERMINAL AREA CONCEPT PLAN
PHASE 1 - DEPARTURE LOUNGE EXPANSION (WEST)
Statement of Probable Cost

<table>
<thead>
<tr>
<th>Facility Construction & Services</th>
<th>QTY</th>
<th>UNIT</th>
<th>DUNIT</th>
<th>TOTAL 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHELL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basement</td>
<td>11,410</td>
<td>SF</td>
<td>720.00</td>
<td>8,249,200</td>
</tr>
<tr>
<td>1-Story Shell</td>
<td>3,210</td>
<td>SF</td>
<td>306.00</td>
<td>982,260</td>
</tr>
<tr>
<td>2-Story Shell</td>
<td>31,250</td>
<td>SF</td>
<td>190.00</td>
<td>5,990,600</td>
</tr>
<tr>
<td>2-Story (Replace Existing Roof with Floor)</td>
<td></td>
<td></td>
<td></td>
<td>2,232,750</td>
</tr>
<tr>
<td>2nd Level (Boardway at 1st Level)</td>
<td>25,026</td>
<td>SF</td>
<td>206.00</td>
<td>5,195,296</td>
</tr>
<tr>
<td>INTERIORS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baggage Screening</td>
<td>15,000</td>
<td>SF</td>
<td>24.23</td>
<td>222,300</td>
</tr>
<tr>
<td>TSA Offices</td>
<td>960</td>
<td>SF</td>
<td>83.43</td>
<td>80,890</td>
</tr>
<tr>
<td>Communications</td>
<td>450</td>
<td>SF</td>
<td>82.98</td>
<td>37,411</td>
</tr>
<tr>
<td>Level 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bag Makeup</td>
<td>3,000</td>
<td>SF</td>
<td>22.23</td>
<td>66,095</td>
</tr>
<tr>
<td>Storage</td>
<td>410</td>
<td>SF</td>
<td>78.80</td>
<td>32,602</td>
</tr>
<tr>
<td>Circulation</td>
<td>2,270</td>
<td>SF</td>
<td>714.83</td>
<td>1,615,236</td>
</tr>
<tr>
<td>MEP</td>
<td>1,140</td>
<td>SF</td>
<td>83.86</td>
<td>95,797</td>
</tr>
<tr>
<td>Lodging Dock</td>
<td>1,200</td>
<td>SF</td>
<td>24.23</td>
<td>24,230</td>
</tr>
<tr>
<td>Trash Enclosure</td>
<td>1,000</td>
<td>SF</td>
<td>26.23</td>
<td>25,250</td>
</tr>
<tr>
<td>Egress Core Circulation</td>
<td>1,200</td>
<td>SF</td>
<td>520.11</td>
<td>624,112</td>
</tr>
<tr>
<td>Ramp Circulation</td>
<td>1,200</td>
<td>SF</td>
<td>73.67</td>
<td>76,213</td>
</tr>
<tr>
<td>Future Groom</td>
<td>650</td>
<td>SF</td>
<td>19.23</td>
<td>12,000</td>
</tr>
<tr>
<td>ATO Shell</td>
<td>3,412</td>
<td>SF</td>
<td>10.95</td>
<td>37,261</td>
</tr>
<tr>
<td>Level 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restrooms</td>
<td>1,490</td>
<td>SF</td>
<td>742.20</td>
<td>1,097,878</td>
</tr>
<tr>
<td>Concessions</td>
<td>6,600</td>
<td>SF</td>
<td>10.65</td>
<td>71,356</td>
</tr>
<tr>
<td>Holdroom</td>
<td>21,400</td>
<td>SF</td>
<td>83.18</td>
<td>1,790,202</td>
</tr>
<tr>
<td>Storage</td>
<td>2,770</td>
<td>SF</td>
<td>78.80</td>
<td>219,170</td>
</tr>
<tr>
<td>Ramps (to tarmac)</td>
<td>1,750</td>
<td>SF</td>
<td>62.08</td>
<td>108,640</td>
</tr>
<tr>
<td>Circulation</td>
<td>14,350</td>
<td>SF</td>
<td>713.83</td>
<td>1,653,461</td>
</tr>
<tr>
<td>MEP</td>
<td>6,640</td>
<td>SF</td>
<td>83.86</td>
<td>573,627</td>
</tr>
<tr>
<td>Exterior Terrace</td>
<td>1,000</td>
<td>SF</td>
<td>36.00</td>
<td>36,400</td>
</tr>
<tr>
<td>OTHER SERVICES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar</td>
<td>89,322</td>
<td>SF</td>
<td>1.40</td>
<td>125,591</td>
</tr>
<tr>
<td>Demolition</td>
<td>89,322</td>
<td>SF</td>
<td>75.60</td>
<td>1,209,847</td>
</tr>
<tr>
<td>Baggage Handling Equipment</td>
<td>89,322</td>
<td>SF</td>
<td>65.23</td>
<td>5,826,050</td>
</tr>
<tr>
<td>Jet Bridge (1)</td>
<td>89,322</td>
<td>SF</td>
<td>60.12</td>
<td>5,200,000</td>
</tr>
</tbody>
</table>

CIVIL & MEF
- Mechanical: 89,322 SF 36.43 3,253,700
- Power Plant: 89,322 SF 30.60 2,731,070
- Electrical & Low Voltage: 89,322 SF 77.96 6,965,543
- Plumbing: 89,322 SF 5.97 522,911
- Fire Sprinklers: 89,322 SF 4.17 375,000
- Civil: 89,322 SF 55.06 5,007,825

Phase 1 Hardcost Total: 57,043,000

Low-Range for the markup is included on page 2. This range is presented because the design has not been completed and market conditions might change at the time of bidding.

Markups to the Hardcost

<table>
<thead>
<tr>
<th></th>
<th>Low Side Total</th>
<th>High Side Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimating Contingency</td>
<td>13.00% 8,558,450</td>
<td>20.00% 11,408,600</td>
</tr>
<tr>
<td>General Conditions</td>
<td>8.00% 5,247,596</td>
<td>10.00% 5,747,128</td>
</tr>
<tr>
<td>Insurance</td>
<td>1.00% 123,558</td>
<td>1.00% 139,344</td>
</tr>
<tr>
<td>Profit & Overhead</td>
<td>6.00% 4,318,858</td>
<td>6.00% 4,906,404</td>
</tr>
<tr>
<td>Performance Bond</td>
<td>1.20% 910,596</td>
<td>1.20% 955,006</td>
</tr>
<tr>
<td>Excavation</td>
<td>6.00% 4,932,005</td>
<td>14.00% 11,280,198</td>
</tr>
<tr>
<td>CMGC Participation</td>
<td>6.00% 9,109,001</td>
<td>6.00% 5,511,167</td>
</tr>
<tr>
<td>OR Gross Receipts Tax</td>
<td>0.37% 466,535</td>
<td>0.53% 523,995</td>
</tr>
</tbody>
</table>

Markups Total: 50,182,782 40,844,506

PHASE 1 TOTAL: 87,225,782 97,887,505

ARCH: RSMH

Dwg Date: 2021/11/01

CONSTRUCTION FOCUS, INC.

EUGENE, OREGON

Estimate Date: October 8, 2021

Revision # 1

Redmond Municipal Airport – Terminal Area Concept Plan 9-20
Redmond Municipal Airport
Terminal Area Concept Plan
Phase 2 - Ticketing Expansion/MEP

Statement of Probable Cost

<table>
<thead>
<tr>
<th>Facility Construction & Services</th>
<th>QTY</th>
<th>UNIT</th>
<th>SUM</th>
<th>TOTAL $</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHELL</td>
<td>16,192</td>
<td>SF</td>
<td>190.00</td>
<td>2,428,200</td>
</tr>
<tr>
<td>INTERIORS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 1 ATO/Ticketing</td>
<td></td>
<td></td>
<td>147.53</td>
<td>1,446,089</td>
</tr>
<tr>
<td>Level 2 MEP Suite</td>
<td>6,390</td>
<td>SF</td>
<td>46.97</td>
<td>300,155</td>
</tr>
<tr>
<td>OTHER SERVICES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar</td>
<td>16,192</td>
<td>SF</td>
<td>1.00</td>
<td>16,192</td>
</tr>
<tr>
<td>Demolition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVIL & MEP</td>
<td>16,192</td>
<td>SF</td>
<td>80.38</td>
<td>1,301,870</td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical & Low Voltage</td>
<td>16,192</td>
<td>SF</td>
<td>76.69</td>
<td>1,241,764</td>
</tr>
<tr>
<td>Plumbing</td>
<td>16,192</td>
<td>SF</td>
<td>3.95</td>
<td>65,000</td>
</tr>
<tr>
<td>Fire Sprinklers</td>
<td>16,192</td>
<td>SF</td>
<td>4.17</td>
<td>67,472</td>
</tr>
<tr>
<td>Civil</td>
<td>16,192</td>
<td>SF</td>
<td>11.91</td>
<td>176,672</td>
</tr>
</tbody>
</table>

Phase 2 Hardcost Total:

- 7,525,410

Markups to the Hardcost

<table>
<thead>
<tr>
<th></th>
<th>Low Side Total</th>
<th>High Side Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimating Contingency</td>
<td>15.00%</td>
<td>10.00%</td>
</tr>
<tr>
<td>General Conditions</td>
<td>0.03%</td>
<td>0.20%</td>
</tr>
<tr>
<td>Insurance</td>
<td>1.60%</td>
<td>1.60%</td>
</tr>
<tr>
<td>Profit & Overhead</td>
<td>0.50%</td>
<td>0.50%</td>
</tr>
<tr>
<td>Performance Bond</td>
<td>1.00%</td>
<td>2.00%</td>
</tr>
<tr>
<td>Contingency</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>OR Gross Receipt Tax</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

Markups Total:

- 4,136,764

Phase 2 TOTAL:

- 11,622,175
- 15,946,797

Redmond Municipal Airport
Terminal Area Concept Plan
Phase 3 - Baggage Claim Expansion

Statement of Probable Cost

<table>
<thead>
<tr>
<th>Facility Construction & Services</th>
<th>QTY</th>
<th>UNIT</th>
<th>SUM</th>
<th>TOTAL $</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHELL</td>
<td>23,892</td>
<td>SF</td>
<td>280.00</td>
<td>897,240</td>
</tr>
<tr>
<td>INTERIORS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 1 Baggage Claim Addition</td>
<td>5,776</td>
<td>SF</td>
<td>759.47</td>
<td>921,099</td>
</tr>
<tr>
<td>Baggage Claim Remodel</td>
<td>2,865</td>
<td>SF</td>
<td>709.47</td>
<td>2,071,760</td>
</tr>
<tr>
<td>Commis</td>
<td>1,563</td>
<td>SF</td>
<td>178.50</td>
<td>17,800</td>
</tr>
<tr>
<td>Restroom Addition</td>
<td>1,563</td>
<td>SF</td>
<td>178.50</td>
<td>259,198</td>
</tr>
<tr>
<td>Level 2 Admin Shell</td>
<td>7,000</td>
<td>SF</td>
<td>14.95</td>
<td>104,680</td>
</tr>
<tr>
<td>CIVIL & MEP</td>
<td>23,892</td>
<td>SF</td>
<td>24.24</td>
<td>579,200</td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Plant</td>
<td>23,892</td>
<td>SF</td>
<td>7.62</td>
<td>182,065</td>
</tr>
<tr>
<td>Electrical & Low Voltage</td>
<td>23,892</td>
<td>SF</td>
<td>76.69</td>
<td>1,832,277</td>
</tr>
<tr>
<td>Plumbing</td>
<td>23,892</td>
<td>SF</td>
<td>7.60</td>
<td>181,204</td>
</tr>
<tr>
<td>Fire Sprinklers</td>
<td>23,892</td>
<td>SF</td>
<td>3.63</td>
<td>89,974</td>
</tr>
<tr>
<td>Civil</td>
<td>23,892</td>
<td>SF</td>
<td>25.12</td>
<td>600,175</td>
</tr>
</tbody>
</table>

Phase 3 Hardcost Total:

- 12,021,647
REDMOND MUNICIPAL AIRPORT
TERMINAL AREA CONCEPT PLAN
PHASE 3 - BAGGAGE CLAIM EXPANSION
Statement of Probable Cost

Low-High Range for the markups is indicated on page 2. This range is presented because the design has not been completed and market conditions might change at the time of bidding.

Markups to the Hardcost

<table>
<thead>
<tr>
<th>Item</th>
<th>Low Side Total</th>
<th>High Side Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimating Contingency</td>
<td>1.933,347</td>
<td>2.055,529</td>
</tr>
<tr>
<td>General Conditions</td>
<td>1,190,032</td>
<td>1,237,398</td>
</tr>
<tr>
<td>Insurance</td>
<td>286,130</td>
<td>287,321</td>
</tr>
<tr>
<td>Profit & Overhead</td>
<td>978,057</td>
<td>1,018,394</td>
</tr>
<tr>
<td>Performance Bond</td>
<td>206,924</td>
<td>215,821</td>
</tr>
<tr>
<td>Escalation</td>
<td>2,094,071</td>
<td>2,136,607</td>
</tr>
<tr>
<td>CMGC Participation</td>
<td>1,172,680</td>
<td>1,208,475</td>
</tr>
<tr>
<td>OR Gross Receipts Tax</td>
<td>116,099</td>
<td>120,826</td>
</tr>
<tr>
<td>Markup Total</td>
<td>7,945,791</td>
<td>8,080,572</td>
</tr>
</tbody>
</table>

PHASE 3 TOTAL:

<table>
<thead>
<tr>
<th></th>
<th>Low Side Total</th>
<th>High Side Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20,835,428</td>
<td>24,847,219</td>
</tr>
</tbody>
</table>

REDMOND MUNICIPAL AIRPORT
TERMINAL AREA CONCEPT PLAN
PHASE 4 - DEPARTURE LOUNGE EXPANSION (EAST)
Statement of Probable Cost

<table>
<thead>
<tr>
<th>Facility Construction & Services</th>
<th>QTY</th>
<th>UNIT</th>
<th>UNIT</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHELL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Story (Egress Core)</td>
<td>2,050</td>
<td>SF</td>
<td>220.00</td>
<td>451,000</td>
</tr>
<tr>
<td>2nd Level (Previous Stair at 1st Level)</td>
<td>1,385</td>
<td>SF</td>
<td>270.00</td>
<td>375,110</td>
</tr>
<tr>
<td>2nd Level (broomway at 1st Level)</td>
<td>12,282</td>
<td>SF</td>
<td>160.00</td>
<td>2,003,240</td>
</tr>
<tr>
<td>2-Story (Replace Existing Roof with Floor)</td>
<td>5,900</td>
<td>SF</td>
<td>220.00</td>
<td>1,298,000</td>
</tr>
<tr>
<td>INTERIORS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restrooms</td>
<td>1,760</td>
<td>SF</td>
<td>74.20</td>
<td>250,327</td>
</tr>
<tr>
<td>Concessions</td>
<td>2,260</td>
<td>SF</td>
<td>70.95</td>
<td>225,391</td>
</tr>
<tr>
<td>Holdrooms</td>
<td>13,000</td>
<td>SF</td>
<td>83.18</td>
<td>1,081,240</td>
</tr>
<tr>
<td>Admin Shell</td>
<td>630</td>
<td>SF</td>
<td>70.95</td>
<td>45,627</td>
</tr>
<tr>
<td>Ramps (To tarmac)</td>
<td>190</td>
<td>SF</td>
<td>62.08</td>
<td>11,794</td>
</tr>
<tr>
<td>Circulation</td>
<td>2,710</td>
<td>SF</td>
<td>713.83</td>
<td>1,959,009</td>
</tr>
<tr>
<td>MEP/Com Inc/MDF</td>
<td>835</td>
<td>SF</td>
<td>83.88</td>
<td>70,123</td>
</tr>
<tr>
<td>Exterior Terrace</td>
<td>1,910</td>
<td>SF</td>
<td>36.00</td>
<td>68,460</td>
</tr>
<tr>
<td>Egress Core</td>
<td>820</td>
<td>SF</td>
<td>520.17</td>
<td>416,088</td>
</tr>
<tr>
<td>OTHER SERVICES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar</td>
<td>24,635</td>
<td>SF</td>
<td>1.00</td>
<td>24,635</td>
</tr>
<tr>
<td>Demolition</td>
<td>24,635</td>
<td>SF</td>
<td>73.50</td>
<td>332,873</td>
</tr>
<tr>
<td>1st Bridge (4 ea)</td>
<td>24,635</td>
<td>SF</td>
<td>188.73</td>
<td>4,600,000</td>
</tr>
<tr>
<td>CIVIL & MEP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td>24,635</td>
<td>SF</td>
<td>30.75</td>
<td>742,775</td>
</tr>
<tr>
<td>Electrical & Low Voltage</td>
<td>24,635</td>
<td>SF</td>
<td>63.69</td>
<td>1,569,003</td>
</tr>
<tr>
<td>Plumbing</td>
<td>24,635</td>
<td>SF</td>
<td>15.29</td>
<td>576,610</td>
</tr>
<tr>
<td>Fire Sprinklers</td>
<td>24,635</td>
<td>SF</td>
<td>4.62</td>
<td>113,742</td>
</tr>
<tr>
<td>Civil</td>
<td>24,635</td>
<td>SF</td>
<td>34.91</td>
<td>860,000</td>
</tr>
</tbody>
</table>

Phase 4 Hardcost Total: 15,743,846

Low-High Range for the markups is indicated on page 2. This range is presented because the design has not been completed and market conditions might change at the time of bidding.
REDMOND MUNICIPAL AIRPORT
TERMINAL AREA CONCEPT PLAN
PHASE 4 - DEPARTURE LOUNGE EXPANSION (EAST)

Statement of Probable Cost

<table>
<thead>
<tr>
<th>Markups to the Hardcost</th>
<th>Low Side Total</th>
<th>High Side Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimating Contingency</td>
<td>15.0%</td>
<td>26.0%</td>
</tr>
<tr>
<td>General Conditions</td>
<td>6.0%</td>
<td>6.0%</td>
</tr>
<tr>
<td>Insurance</td>
<td>1.0%</td>
<td>1.0%</td>
</tr>
<tr>
<td>Profits & Overhead</td>
<td>6.0%</td>
<td>6.0%</td>
</tr>
<tr>
<td>Performance Bond</td>
<td>1.2%</td>
<td>1.2%</td>
</tr>
<tr>
<td>Escalation</td>
<td>10.0%</td>
<td>10.0%</td>
</tr>
<tr>
<td>CMGC Participation</td>
<td>6.0%</td>
<td>6.0%</td>
</tr>
<tr>
<td>OR Gross Receipt Tax</td>
<td>0.57%</td>
<td>0.57%</td>
</tr>
<tr>
<td>Markups Total:</td>
<td>10,082,201</td>
<td>16,239,102</td>
</tr>
<tr>
<td>PHASE 4 TOTAL:</td>
<td>26,125,046</td>
<td>32,001,949</td>
</tr>
</tbody>
</table>

REDMOND MUNICIPAL AIRPORT
TERMINAL AREA CONCEPT PLAN
PHASE 5 - INTERNAL RECONFIGURATION

Statement of Probable Cost

<table>
<thead>
<tr>
<th>Facility Construction & Services</th>
<th>QTY</th>
<th>UNIT</th>
<th>UNIT TOTAL $</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERIORS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Car Rental Demo/Remodel</td>
<td>5,250</td>
<td>SF</td>
<td>77,973</td>
</tr>
<tr>
<td>Circulation</td>
<td>1,250</td>
<td>SF</td>
<td>176,764</td>
</tr>
<tr>
<td>Car Rental</td>
<td>2,700</td>
<td>SF</td>
<td>448,558</td>
</tr>
<tr>
<td>Comm</td>
<td>7,500</td>
<td>SF</td>
<td>175,000</td>
</tr>
<tr>
<td>Future/Space Shell</td>
<td>720</td>
<td>SF</td>
<td>78,576</td>
</tr>
<tr>
<td>Restroom Addition</td>
<td>1,140</td>
<td>SF</td>
<td>783,600</td>
</tr>
<tr>
<td>Level 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Admin</td>
<td>7,000</td>
<td>SF</td>
<td>188,455</td>
</tr>
<tr>
<td>OTHER SERVICES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar</td>
<td>18,540</td>
<td>SF</td>
<td>1,698,780</td>
</tr>
<tr>
<td>Demolition</td>
<td>18,540</td>
<td>SF</td>
<td>12,100</td>
</tr>
<tr>
<td>CIVIL & MEP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td>18,540</td>
<td>SF</td>
<td>31,433</td>
</tr>
<tr>
<td>Electrical & Low Voltage</td>
<td>18,540</td>
<td>SF</td>
<td>67,455</td>
</tr>
<tr>
<td>Plumbing</td>
<td>18,540</td>
<td>SF</td>
<td>7,117</td>
</tr>
<tr>
<td>Fire Sprinklers</td>
<td>18,540</td>
<td>SF</td>
<td>6,805</td>
</tr>
<tr>
<td>Civil</td>
<td>18,540</td>
<td>SF</td>
<td>70,327</td>
</tr>
<tr>
<td>Phase 5 Hardcost Total:</td>
<td></td>
<td></td>
<td>4,998,201</td>
</tr>
</tbody>
</table>

Low-R Value for the markups is included below. This range is presented because the design has not been completed and market conditions might change at the time of bidding.

<table>
<thead>
<tr>
<th>Markups to the Hardcost</th>
<th>Low Side Total</th>
<th>High Side Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimating Contingency</td>
<td>15.0%</td>
<td>20.0%</td>
</tr>
<tr>
<td>General Conditions</td>
<td>8.0%</td>
<td>8.0%</td>
</tr>
<tr>
<td>Insurance</td>
<td>1.0%</td>
<td>1.0%</td>
</tr>
<tr>
<td>Profits & Overhead</td>
<td>6.0%</td>
<td>6.0%</td>
</tr>
<tr>
<td>Performance Bond</td>
<td>1.2%</td>
<td>1.2%</td>
</tr>
<tr>
<td>Escalation</td>
<td>10.0%</td>
<td>10.0%</td>
</tr>
<tr>
<td>CMGC Participation</td>
<td>6.0%</td>
<td>6.0%</td>
</tr>
<tr>
<td>OR Gross Receipt Tax</td>
<td>0.57%</td>
<td>0.57%</td>
</tr>
<tr>
<td>Markups Total:</td>
<td>5,013,023</td>
<td>5,688,958</td>
</tr>
<tr>
<td>PHASE 5 TOTAL:</td>
<td>5,510,825</td>
<td>10,687,138</td>
</tr>
<tr>
<td>Description</td>
<td>PHASE 1</td>
<td>PHASE 2</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Description</td>
<td>Unit</td>
<td>Unit</td>
</tr>
<tr>
<td></td>
<td>$/Unit</td>
<td>$/Unit</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>$/Unit</td>
<td>$/Unit</td>
</tr>
<tr>
<td></td>
<td>Makups</td>
<td>Makups</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Program</td>
<td>Program</td>
</tr>
<tr>
<td></td>
<td>$/Unit</td>
<td>$/Unit</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>$/Unit</td>
<td>$/Unit</td>
</tr>
<tr>
<td></td>
<td>Makups</td>
<td>Makups</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Program</td>
<td>Program</td>
</tr>
<tr>
<td></td>
<td>$/Unit</td>
<td>$/Unit</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>$/Unit</td>
<td>$/Unit</td>
</tr>
<tr>
<td></td>
<td>Makups</td>
<td>Makups</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Program</td>
<td>Program</td>
</tr>
<tr>
<td></td>
<td>$/Unit</td>
<td>$/Unit</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>$/Unit</td>
<td>$/Unit</td>
</tr>
<tr>
<td></td>
<td>Makups</td>
<td>Makups</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Program</td>
<td>Program</td>
</tr>
<tr>
<td></td>
<td>$/Unit</td>
<td>$/Unit</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>$/Unit</td>
<td>$/Unit</td>
</tr>
<tr>
<td></td>
<td>Makups</td>
<td>Makups</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Program</td>
<td>Program</td>
</tr>
<tr>
<td></td>
<td>$/Unit</td>
<td>$/Unit</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>$/Unit</td>
<td>$/Unit</td>
</tr>
<tr>
<td></td>
<td>Makups</td>
<td>Makups</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Program</td>
<td>Program</td>
</tr>
<tr>
<td></td>
<td>$/Unit</td>
<td>$/Unit</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>$/Unit</td>
<td>$/Unit</td>
</tr>
<tr>
<td></td>
<td>Makups</td>
<td>Makups</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Program</td>
<td>Program</td>
</tr>
<tr>
<td></td>
<td>$/Unit</td>
<td>$/Unit</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>$/Unit</td>
<td>$/Unit</td>
</tr>
<tr>
<td></td>
<td>Makups</td>
<td>Makups</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Program</td>
<td>Program</td>
</tr>
<tr>
<td></td>
<td>$/Unit</td>
<td>$/Unit</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>$/Unit</td>
<td>$/Unit</td>
</tr>
<tr>
<td></td>
<td>Makups</td>
<td>Makups</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Program</td>
<td>Program</td>
</tr>
<tr>
<td></td>
<td>$/Unit</td>
<td>$/Unit</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>$/Unit</td>
<td>$/Unit</td>
</tr>
<tr>
<td></td>
<td>Makups</td>
<td>Makups</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Program</td>
<td>Program</td>
</tr>
<tr>
<td></td>
<td>$/Unit</td>
<td>$/Unit</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>$/Unit</td>
<td>$/Unit</td>
</tr>
<tr>
<td></td>
<td>Makups</td>
<td>Makups</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Program</td>
<td>Program</td>
</tr>
<tr>
<td></td>
<td>$/Unit</td>
<td>$/Unit</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>$/Unit</td>
<td>$/Unit</td>
</tr>
<tr>
<td></td>
<td>Makups</td>
<td>Makups</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
</tbody>
</table>
PHASE 1
PHASE 2
PHASE 3
PHASE 4
PHASE 5 - REVISED (ADMIN BUILDOUT ATOP BAG CLAIM, INTERIOR RECONFIG)

Total Program Cost

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Range LOW</td>
<td>$135,761,714</td>
<td></td>
</tr>
<tr>
<td>Construction Range HIGH</td>
<td>$154,958,815</td>
<td></td>
</tr>
<tr>
<td>Soft Costs (Design, Mgmt, etc)</td>
<td>$14,298,112</td>
<td></td>
</tr>
<tr>
<td>Contingency (Design & Construction) LOW</td>
<td>$28,596,224</td>
<td></td>
</tr>
<tr>
<td>Contingency (Design & Construction) HIGH</td>
<td>$33,362,261</td>
<td></td>
</tr>
<tr>
<td>Total Program Low</td>
<td>$178,656,050</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>$202,619,188</td>
<td></td>
</tr>
</tbody>
</table>
For information only, a ROM cost assessment was prepared for the potential concessions build out on the upper level as follows:

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
<th>Area</th>
<th>Unit</th>
<th>Cost/SF</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Full Bar</td>
<td>4,400</td>
<td>sf</td>
<td>$226.03</td>
<td>$994,543</td>
</tr>
<tr>
<td>B</td>
<td>Restaurant w/ Full Kitchen</td>
<td>1,600</td>
<td>sf</td>
<td>$397.15</td>
<td>$635,444</td>
</tr>
<tr>
<td>C</td>
<td>Retail/Gifts</td>
<td>880</td>
<td>Sf</td>
<td>$142.58</td>
<td>$125,467</td>
</tr>
<tr>
<td>D</td>
<td>Minor Food Prep (Sandwich Shop)</td>
<td>680</td>
<td>Sf</td>
<td>$270.56</td>
<td>$183,983</td>
</tr>
<tr>
<td>E</td>
<td>Combo Pizza Oven / Gift Area</td>
<td>1,900</td>
<td>Sf</td>
<td>$280.22</td>
<td>$593,424</td>
</tr>
<tr>
<td></td>
<td>Combo Pizza Oven / Gift Area (one of these two spots)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total $2,471,861